liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
The triangulation tensor
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
2009 (English)In: Computer Vision and Image Understanding, ISSN 1077-3142, E-ISSN 1090-235X, Vol. 113, no 9, 935-945 p.Article in journal (Refereed) Published
Abstract [en]

This article presents a computationally efficient approach to the triangulation of 3D points from their projections in two views. The homogenous coordinates of a 3D point is given as a multi-linear mapping on its homogeneous image coordinates, a computation of low computational complexity. The multi-linear mapping is a tensor, and an element of a projective space, that can be computed directly from the camera matrices and some parameters. These parameters imply that the tensor is not unique: for a given camera pair the subspace K of triangulation tensors is six-dimensional. The triangulation tensor is 3D projective covariant and satisfies a set of internal constraints. Reconstruction of 3D points using the proposed tensor is studied for the non-ideal case, when the image coordinates are perturbed by noise and the epipolar constraint exactly is not satisfied exactly. A particular tensor of K is then the optimal choice for a simple reduction of 3D errors, and we present a computationally efficient approach for determining this tensor. This approach implies that normalizing image coordinate transformations are important for obtaining small 3D errors.

In addition to computing the tensor from the cameras, we also investigate how it can be further optimized relative to error measures in the 3D and 2D spaces. This optimization is evaluated for sets of real 3D + 2D + 2D data by comparing the reconstruction to some of the triangulation methods found in the literature, in particular the so-called optimal method that minimizes 2D L2 errors. The general conclusion is that, depending on the choice of error measure and the optimization implementation, it is possible to find a tensor that produces smaller 3D errors (both L1 and L2) but slightly larger 2D errors than the optimal method does. Alternatively, we may find a tensor that gives approximately comparable results to the optimal method in terms of both 3D and 2D errors. This means that the proposed tensor based method of triangulation is both computationally efficient and can be calibrated to produce small reconstruction or reprojection errors for a given data set.

Place, publisher, year, edition, pages
2009. Vol. 113, no 9, 935-945 p.
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-50626DOI: 10.1016/j.cviu.2009.04.003OAI: diva2:271768
Available from: 2009-10-13 Created: 2009-10-13 Last updated: 2014-09-10

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nordberg, Klas
By organisation
Computer VisionThe Institute of Technology
In the same journal
Computer Vision and Image Understanding
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 384 hits
ReferencesLink to record
Permanent link

Direct link