liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice
Department of Chemistry, Ohio State University, Columbus, Ohio 43214.
Department of Chemistry, Ohio State University, Columbus, Ohio 43214.
Department of Chemistry, Ohio State University, Columbus, Ohio 43214.
Departments of Chemistry and Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Show others and affiliations
2001 (English)In: Journal of Chemical Physics, ISSN 0021-9606, Vol. 114, no 6, 2527-2540 p.Article in journal (Refereed) Published
Abstract [en]

Water clusters and some phases of ice are characterized by many isomers with similar oxygen positions, but which differ in direction of hydrogen bonds. A relationship between physical properties, like energy or magnitude of the dipole moment, and hydrogen bond arrangements has long been conjectured. The topology of the hydrogen bond network can be summarized by oriented graphs. Since scalar physical properties like the energy are invariant to symmetry operations, graphical invariants are the proper features of the hydrogen bond network which can be used to discover the correlation with physical properties. We demonstrate how graph invariants are generated and illustrate some of their formal properties. It is shown that invariants can be used to change the enumeration of symmetry-distinct hydrogen bond topologies, nominally a task whose computational cost scales like N2, where N is the number of configurations, into an N ln N process. The utility of graph invariants is confirmed by considering two water clusters, the (H2O)6 cage and (H2O)20 dodecahedron, which, respectively, possess 27 and 30 026 symmetry-distinct hydrogen bond topologies associated with roughly the same oxygen atom arrangements. Physical properties of these clusters are successfully fit to a handful of graph invariants. Using a small number of isomers as a training set, the energy of other isomers of the (H2O)20 dodecahedron can even be estimated well enough to locate phase transitions. Some preliminary results for unit cells of ice-Ih are given to illustrate the application of our results to periodic systems.

 

Place, publisher, year, edition, pages
2001. Vol. 114, no 6, 2527-2540 p.
Keyword [en]
water, molecular clusters, hydrogen bonds, isomerism, topology, ice
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-50685DOI: 10.1063/1.1336804OAI: oai:DiVA.org:liu-50685DiVA: diva2:271912
Available from: 2009-10-13 Created: 2009-10-13 Last updated: 2015-03-09

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCPSA6000114000006002527000001&idtype=cvips&gifs=yes

Authority records BETA

Ojamäe, Lars

Search in DiVA

By author/editor
Ojamäe, Lars
By organisation
Physical Chemistry
In the same journal
Journal of Chemical Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 83 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf