liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wastegate Actuator Modeling and Model-Based Boost Pressure Control
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
2009 (English)In: Proceedings of the 2009 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling / [ed] Antonio Sciarretta and Paolino Tona, 2009, 87-94 p.Conference paper, Published paper (Refereed)
Abstract [en]

The torque response of an engine is important for driver acceptance. For turbocharged spark ignited (TCSI) engines this is tightly connected to the boost pressure control, which is usually achieved with a wastegate. A challenging scenario is when the throttle is fully open and the load is essentially controlled by the wastegate. First a model for the pneumatic wastegate actuator and air control solenoid is developed. The wastegate model consists of three submodels; the actuator pressure, the static position, and an additional position dynamics. A complete engine model is constructed by including the actuator model in a Mean Value Engine Model (MVEM) for a TCSI engine. This model describes the transient boost pressure response to steps in wastegate control inputs. The subsystems and complete MVEM are validated on an engine test bench and it explains the overshoot seen in the step responses. The model is used to study the system response and give insight into the dominating phenomena and it points out that the engine speed is important for the response. Further, for each speed it is sufficient to model the system as a second order linear system, that captures an overshoot. A controller consisting of a mapped feedforward loop and a gain scheduled feedback loop is developed together with a tuning method based on the IMC framework for the feedback loop. The controller and tuning method is shown to achieve the desired boost pressure behavior both on the complete MVEM and on real engines. The experimental validation is carried out both in an engine test cell and in a vehicle.

Place, publisher, year, edition, pages
2009. 87-94 p.
Keyword [en]
Engine modeling, engine control, turbocharging, internal model control, PID
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-50769DOI: 10.3182/20091130-3-FR-4008.00012ISBN: 978-3-902661-58-6 (print)OAI: oai:DiVA.org:liu-50769DiVA: diva2:272129
Conference
2009 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, November 30th - December 2nd, Paris, France
Projects
LINK-SIC, MOVIII
Available from: 2009-10-14 Created: 2009-10-14 Last updated: 2014-08-27Bibliographically approved
In thesis
1. Modeling and control of actuators and co-surge in turbocharged engines
Open this publication in new window or tab >>Modeling and control of actuators and co-surge in turbocharged engines
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The torque response of the engine is important for the driving experience of a vehicle. In spark ignited engines, torque is proportional to the air flow into the cylinders. Controlling torque therefore implies controlling air flow. In modern turbocharged engines, the driver commands are interpreted by an electronic control unit that controls the engine through electromechanical and pneumatic actuators. Air flow to the intake manifold is controlled by an electronic throttle, and a wastegate controls the energy to the turbine, affecting boost pressure and air flow. These actuators and their dynamics affect the torque response and a lot of time is put into calibration of controllers for these actuators. By modeling and understanding the actuator behavior this dynamics can be compensated for, leaving a reduced control problem, which can shorten the calibration time.

Electronic throttle servo control is the first problem studied. By constructing a control oriented model for the throttle servo and inverting that model, the resulting controller becomes two static compensators for friction and limp-home nonlinearities, together with a PD-controller. A gain-scheduled I-part is added for robustness to handle model errors. The sensitivity to model errors is studied and a method for tuning the controller is presented. The performance has been evaluated in simulation, in test vehicle, and in a throttle control benchmark.

A model for a pneumatic wastegate actuator and solenoid control valve, used for boost pressure control, is presented. The actuator dynamics is shown to be important for the transient boost pressure response. The model is incorporated in a mean value engine model and shown to give accurate description of the transient response. A tuning method for the  feedback (PID) part of a boost controller is proposed, based on step responses in wastegate control signal. Together with static feedforward the controller is shown to achieve the desired boost pressure response. Submodels for an advanced boost control system consisting of several vacuum actuators, solenoid valves, a vacuum tank and a vacuum pump are developed. The submodels and integrated system are evaluated on a two stage series sequential turbo system, and control with system voltage disturbance rejection is demonstrated on an engine in a test cell.

Turbocharged V-type engines often have two parallel turbochargers, each powered by one bank of cylinders. When the two air paths are connected before the throttle an unwanted oscillation can occur. When the compressors operate close to the surge line and a disturbance alters the mass flow balance, the compressors can begin to alternately go into surge, this is called co-surge. Measurements on co-surge in parallel turbocharged engines are presented and analyzed. A mean value engine model, augmented with a Moore-Greitzer compressor model to handle surge, is shown to capture the cosurge behavior. A sensitivity analysis shows which model parameters have the largest influence of the phenomena. The compressor operation in the map during co-surge is studied, and the alternating compressor speeds are shown to have a major impact on the continuing oscillation. Based on the analysis, detection methods and a controller are proposed, these detect co-surge and control the turbo speeds to match during co-surge. The controller is evaluated both in simulation and on a test vehicle in a vehicle dynamometer, showing that co-surge can be detected and the oscillations quelled.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 28 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1590
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-105687 (URN)10.3384/diss.diva-105687 (DOI)978-91-7519-355-7 (ISBN)
Public defence
2014-05-16, Visionen, ing 27-29, B-huset, våning 1, Campus Valla, Linköpings Universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2014-04-11 Created: 2014-04-02 Last updated: 2014-04-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Thomasson, AndreasEriksson, LarsLeufvén, OskarAndersson, Per

Search in DiVA

By author/editor
Thomasson, AndreasEriksson, LarsLeufvén, OskarAndersson, Per
By organisation
Vehicular SystemsThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 689 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf