liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polarization characteristics in polyelectrolyte thin film capacitors: Targeting field-effect transistors and sensors
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
2009 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Polymers are very attractive materials that can be tailored for specific needs and functionality. They can for instance be made electrically insulating or (semi)conducting, with specific mechanical properties. Polymers are often processable from a solution, which enables the use of low-cost manufacturing techniques to fabricate polymer devices. Polymer-based electronic and electrochemical devices and sensors have been developed.

This thesis is related to the polarization characteristics in polyelectrolyte thin film capacitor structures. The polarization characteristics have been analyzed at various humidity levels for polyelectrolyte capacitors alone and when incorporated as the gate-insulating material in polyelectrolyte-gated organic field-effect transistors. Both limitations and possibilities of this class of transistors have been identified. Also, a concept for wireless readout of a passively operated humidity sensor circuit is demonstrated. The sensing mechanism of this sensor is related to the polarization in a polyelectrolyte thin film capacitor. This sensor circuit can be manufactured entirely with common printing technologies of today and can be integrated into a low-cost passive sensor label.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press , 2009. , 40 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1412
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-51547ISBN: 978-91-7393-535-7 (print)OAI: oai:DiVA.org:liu-51547DiVA: diva2:275495
Presentation
2009-10-16, TP2, Täppan, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2009-11-05 Created: 2009-11-05 Last updated: 2017-02-03Bibliographically approved
List of papers
1. Effects of the Ioinc Currents in Electrolyte-gated Organic Field-Effect Transistors
Open this publication in new window or tab >>Effects of the Ioinc Currents in Electrolyte-gated Organic Field-Effect Transistors
2008 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 18, no 21, 3529-3536 p.Article in journal (Refereed) Published
Abstract [en]

Polyelectrolytes are promising materials as gate dielectrics in organic field-effect transistors (OFETs). Upon gate bias, their polarization induces an ionic charging current, which generates a large double layer capacitor (10-500 µF cm-2) at the semiconductor/electrolyte interface. The resulting transistor operates at low voltages (<1 V) and its conducting channel is formed in 50 µs. The effect of ionic currents on the performance of the OFETs is investigated by varying the relative humidity of the device ambience. Within defined humidity levels and potential values, the water electrolysis is negligible and the OFETs performances are optimum.

Place, publisher, year, edition, pages
Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2008
Keyword
electrolytes, field-effect transistors, ionic conductivity, organic electronics
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:liu:diva-15724 (URN)10.1002/adfm.200701251 (DOI)
Available from: 2008-12-04 Created: 2008-12-01 Last updated: 2017-12-14Bibliographically approved
2. Insulator Polarization Mechanisms in Polyelectrolyte-Gated Organic Field-Effect Transistors
Open this publication in new window or tab >>Insulator Polarization Mechanisms in Polyelectrolyte-Gated Organic Field-Effect Transistors
2009 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 19, no 20, 3334-3341 p.Article in journal (Refereed) Published
Abstract [en]

Electrolyte-gated organic field-effect transistors (OFETs) hold promise for robust printed electronics operating at low voltages. The polarization mechanism of thin solid electrolyte films, the gate insulator in such OFETs, is still unclear and appears to limit the transient current characteristics of the transistors. Here, the polarization response of a thin proton membrane, a poly(styrenesulfonic acid) film, is controlled by varying the relative humidity. The formation of the conducting transistor channel follows the polarization of the polyelectrolyte, such that the drain transient current characteristics versus the time are rationalized by three different polarization mechanisms: the dipolar relaxation at high frequencies, the ionic relaxation (migration) at intermediate frequencies, and the electric double-layer formation at the polyelectrolyte interfaces at low frequencies. The electric double layers of polyelectrolyte capacitors are formed in 1 µs at humid conditions and an effective capacitance per area of 10 µF cm-2 is obtained at 1 MHz, thus suggesting that this class of OFETs might operate at up to 1 MHz at 1 V.

Place, publisher, year, edition, pages
Wiley InterScience, 2009
Keyword
Dielectrics, Ionic conductivity, Organic electronics, Organic field-effect transistors, Polyelectrolytes
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-51545 (URN)10.1002/adfm.200900588 (DOI)
Available from: 2009-11-05 Created: 2009-11-05 Last updated: 2017-12-12Bibliographically approved
3. Proton motion in a polyelectrolyte: A probe for wireless humidity sensors
Open this publication in new window or tab >>Proton motion in a polyelectrolyte: A probe for wireless humidity sensors
2010 (English)In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 143, no 2, 482-486 p.Article in journal (Refereed) Published
Abstract [en]

Low-cost passive wireless electronic sensor labels glued onto packages are highly desirable since they enable monitoring of the status of the packages for instance along the logistic chain or while stored at a shelf. Such additional sensing feature would be of great value for many producers and vendors, active in e.g. the food or construction industries. Here, we explore a novel concept for wireless sensing and readout, in which the humidity sensitive ionic motion in a polyelectrolyte membrane is directly translated into a shift of the resonance frequency of a resonance circuit. Thanks to its simplicity, the wireless sensor device itself can be manufactured entirely using common printing techniques and can be integrated into a low-cost passive electronic sensor label.

Place, publisher, year, edition, pages
Elsevier / ScienceDirect, 2010
Keyword
Humidity sensor, Polyelectrolyte, Printed electronics, Wireless sensor, Resonance, Packaging
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-51546 (URN)10.1016/j.snb.2009.09.043 (DOI)000274774100004 ()
Note
Original Publication: Oscar Larsson, Xiaodong Wang, Magnus Berggren and Xavier Crispin, Proton motion in a polyelectrolyte: A probe for wireless humidity sensors, 2010, Sensors and actuators. B, Chemical, (143), 2, 482-486. http://dx.doi.org/10.1016/j.snb.2009.09.043 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/ Available from: 2009-11-05 Created: 2009-11-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

Polarization characteristics in polyelectrolyte thin film capacitors : Targeting field-effect transistors and sensors(438 kB)1454 downloads
File information
File name FULLTEXT01.pdfFile size 438 kBChecksum SHA-512
183baf48b638b1489af831b71841516db7a2c5c1bd8a60ff9414b01ce012c9571dc9bd25be55b353c5505597612a621bac8c6a740e5f75dd371758241b272397
Type fulltextMimetype application/pdf
Cover(64 kB)78 downloads
File information
File name COVER01.pdfFile size 64 kBChecksum SHA-512
539b03877f03c36264c1fb618abdf652eeac0e13f5b27912f5458db4fb477b0e7a7ec7f13516a103ef9c6a063c8ff204a9656b4e23d637e81f5c1722dcd1d85e
Type coverMimetype application/pdf

Authority records BETA

Larsson, Oscar

Search in DiVA

By author/editor
Larsson, Oscar
By organisation
Department of Science and TechnologyThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1454 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2049 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf