liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Not merely a passive co-chaperone: dynamic remodeling of protein substrate by GroES alone and in concert with GroEL
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Stopped‐flow folding experiments of human carbonic anhydrase II (HCA II) monitored by ANS fluorescence showed formation of an early molten globule intermediate. Folding of HCA II both in the presence of GroEL alone or GroES alone led to a loss of ANS binding compared to that in the spontaneous refolding process, showing that GroES alone is capable to interact with the refolding protein and that the molten globule substrate seems to be brought into a more unfolded state by both chaperonins. Moreover, an additive effect of the reduction of ANS binding during the early refolding stages was observed in the presence of GroEL+GroES, suggesting a concerted additive decrease in formation of molten globule by the chaperonins. The interactions during folding (from 50 ms to 3 h) between HCA II and GroEL alone, GroES alone, GroEL/ES and GroEL/ES/ATP was monitored in more detail using five fluorescence (AEDANS) labeled HCA II mutants and steady‐state and stopped‐flow Trp‐AEDANS FRET measurements. We observed that GroEL stretches the protein substrate as an early event in the folding process, when compared to spontaneous folding. Interestingly, GroES alone can interact with the folding protein leading to remodelling of the structure of the molten globule intermediate. Furthermore, GroES exerts additive stretching effects of the protein substrate in concert with GroEL. However, in the absence of GroEL the action by GroES is transient and does not affect the reactivation kinetics or final yield and thereby GroES does not exhibit classical chaperone activity, which is likely the reason why the independent GroES activity on protein substrates has gone undiscovered for such a long time.

Keyword [en]
Chaperone, FRET, protein folding, molten‐globule, and carbonic anhydrase
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-51603OAI: oai:DiVA.org:liu-51603DiVA: diva2:275968
Available from: 2009-11-09 Created: 2009-11-09 Last updated: 2012-11-15Bibliographically approved
In thesis
1. Biophysical studies of protein folding upon interaction with molecular chaperones
Open this publication in new window or tab >>Biophysical studies of protein folding upon interaction with molecular chaperones
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proteins are biological macromolecules that serve all functions in cells. Every protein consists of a sequence of amino acids that is folded into a three‐dimensional structure to maintain the unique information it contains and to allow the protein to perform its specific actions. Improper folding caused by mutations in the amino acid sequence or environmental stress can lead to protein aggregation and ultimately to protein conformational disorders such as Parkinson’s disease and other dreadful diseases. Nature has developed special classes of protein guards called foldases and chaperones that can increase folding efficiency in the crowded intracellular milieu by preventing protein aggregation. The present research was aimed to elucidate how chaperones and foldases interact with their target proteins during folding. Special attention was focused on refolding kinetics and dynamic remodulation of site‐specific labeled cysteine variants of the protein human carbonic anhydrase (HCA II) upon interaction with the PPIase cyclophilin18 (Cyp18) and the chaperonin GroEL. Part of the work also compared properties of the group I chaperonin GroEL and the group II chaperonin TRiC, considering how they mediate structural alterations uponinteraction with the cytoskeletal target protein β‐actin. These interactions were studied by various fluorescence techniques, including fluorescence resonance energy transfer (FRET) and fluorescence anisotropy.

Refolding of HCA II is an extremely complicated process that involves very fast and slow folding events, and research has shown that Cyp18 enhances the slow rate‐limiting cistrans proline isomerization steps during the refolding process. Furthermore, the active‐site mutant Cyp18R55A has been reported to posses only about 1% catalytic efficiency when acting on short chromogenic peptide substrates. However, we found that Cyp18R55A is as efficient as the wild‐type Cyp18 in accelerating HCA II refolding. We also noted that Cyp18 enhanced the final yield of the severely destabilized HCA IIH107N, and HCA IIH107F mutants by rescuing transient molten globule intermediates from misfolding as a result of condensation of hydrophobic patches at very early stages of the folding process. These findings led to the conclusion that Arg 55, located in the active site of Cyp18, is not required for prolyl cistrans isomerization of protein substrates, and that Cyp18 can function as both a folding catalyst and a chaperone during HCA II folding.

Studies have demonstrated that sequestering of protein substrates by the chaperonin GroEL alone results in binding‐induced unfolding of aggregation‐prone molten globule intermediates. It was previously assumed that the co‐chaperonin GroES does not play an independent role in folding. However, based on FRET measurements, we found that GroEL alone stretches the protein substrate as an early event, and also that GroES alone can transiently remodulate the structure of the molten globule intermediate during the refolding process. In addition, GroES acts in i concert with GroEL to exert additive transient stretchng effects on the protein core, and it reverses the unfoldase activity of the GroEL termini, leading to compaction of the structure to attain the more constrained native state.

Earlier investigations have shown that partially folded β‐actin binds to both GroEL and the TRiC chaperonin. However, only TRiC guides correct folding of β‐actin, whereas the GroEL–β‐actin interaction is non‐productive. Homo‐FRET measurements on β‐actin mutants labeled with fluorescein during interaction with GroEL and TRiC indicated that interplay with both the chaperonins lead to binding‐induced unfolding and dynamic remodulation of β‐actin. More specifically, the interaction with TRiC resulted in considerable expansion of the entrance of the ATP‐binding cleft of β‐actin by effecting specific modulation of the β‐actin sub‐domains followed by the formation of a compressed state (native‐like) during release from TriC. Conformational rearrangements of β‐actin by GroEL on the other and were ore modest. β‐actin remained rather compact in the complex and consequently did not lead to the native‐like state ven in the encapsulated cis‐cavity when capped by GroES.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 82 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1285
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-51604 (URN)978‐91‐7393‐497‐8 (ISBN)
Public defence
2009-11-27, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2009-11-09 Created: 2009-11-09 Last updated: 2012-11-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to Ph.D. Thesis

Authority records BETA

Moparthi, Satish BabuHammarström, PerCarlsson, Uno

Search in DiVA

By author/editor
Moparthi, Satish BabuHammarström, PerCarlsson, Uno
By organisation
Department of Physics, Chemistry and BiologyThe Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 111 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf