liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt211",{id:"formSmash:upper:j_idt211",widgetVar:"widget_formSmash_upper_j_idt211",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt212_j_idt214",{id:"formSmash:upper:j_idt212:j_idt214",widgetVar:"widget_formSmash_upper_j_idt212_j_idt214",target:"formSmash:upper:j_idt212:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the classification of perfect codes: Extended side class structuresPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2010 (English)In: Discrete Mathematics, ISSN 0012-365X, E-ISSN 1872-681X, Vol. 310, no 1, p. 43-55Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Amsterdam, Netherlands: Elsevier, 2010. Vol. 310, no 1, p. 43-55
##### Keyword [en]

Perfect codes, Side class structures
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-51719DOI: 10.1016/j.disc.2009.07.023ISI: 000272437800007OAI: oai:DiVA.org:liu-51719DiVA, id: diva2:277119
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt573",{id:"formSmash:j_idt573",widgetVar:"widget_formSmash_j_idt573",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt579",{id:"formSmash:j_idt579",widgetVar:"widget_formSmash_j_idt579",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt587",{id:"formSmash:j_idt587",widgetVar:"widget_formSmash_j_idt587",multiple:true});
Available from: 2009-11-16 Created: 2009-11-16 Last updated: 2017-12-12Bibliographically approved
##### In thesis

The two 1-error correcting perfect binary codes, *C* and *C*^{′} are said to be equivalent if there exists a permutation *π* of the set of the *n* coordinate positions and a word such that . Hessler defined *C* and *C*^{′} to be linearly equivalent if there exists a non-singular linear map *φ* such that *C*^{′}=*φ*(*C*). Two perfect codes *C* and *C*^{′} of length *n* will be defined to be *extended equivalent* if there exists a non-singular linear map *φ* and a word such that

Heden and Hessler, associated with each linear equivalence class an invariant *L*_{C} and this invariant was shown to be a subspace of the kernel of some perfect code. It is shown here that, in the case of extended equivalence, the corresponding invariant will be the extension of the code *L*_{C}.

This fact will be used to give, in some particular cases, a complete enumeration of all extended equivalence classes of perfect codes.

1. Optimization, Matroids and Error-Correcting Codes$(function(){PrimeFaces.cw("OverlayPanel","overlay277130",{id:"formSmash:j_idt979:0:j_idt985",widgetVar:"overlay277130",target:"formSmash:j_idt979:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1814",{id:"formSmash:j_idt1814",widgetVar:"widget_formSmash_j_idt1814",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1902",{id:"formSmash:lower:j_idt1902",widgetVar:"widget_formSmash_lower_j_idt1902",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1903_j_idt1905",{id:"formSmash:lower:j_idt1903:j_idt1905",widgetVar:"widget_formSmash_lower_j_idt1903_j_idt1905",target:"formSmash:lower:j_idt1903:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});