liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Optimization, Matroids and Error-Correcting CodesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2009 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press , 2009. , 55 p.
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1277
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-51722ISBN: 978-91-7393-521-0 (print)OAI: oai:DiVA.org:liu-51722DiVA: diva2:277130
##### Public defence

2009-12-16, Nobel (BL32), hus B, ing. 23, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt437",{id:"formSmash:j_idt437",widgetVar:"widget_formSmash_j_idt437",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt443",{id:"formSmash:j_idt443",widgetVar:"widget_formSmash_j_idt443",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt449",{id:"formSmash:j_idt449",widgetVar:"widget_formSmash_j_idt449",multiple:true});
Available from: 2009-11-16 Created: 2009-11-16 Last updated: 2010-01-12Bibliographically approved
##### List of papers

The first subject we investigate in this thesis deals with optimization problems on graphs. The edges are given costs defined by the values of independent exponential random variables. We show how to calculate some or all moments of the distributions of the costs of some optimization problems on graphs.

The second subject that we investigate is 1-error correcting perfect binary codes, perfect codes for short. In most work about perfect codes, two codes are considered equivalent if there is an isometric mapping between them. We call this isometric equivalence. Another type of equivalence is given if two codes can be mapped on each other using a non-singular linear map. We call this linear equivalence. A third type of equivalence is given if two codes can be mapped on each other using a composition of an isometric map and a non-singular linear map. We call this extended equivalence.

- In Paper 1 we give a new better bound on how much the cost of the matching problem with exponential edge costs varies from its mean.
- In Paper 2 we calculate the expected cost of an LP-relaxed version of the matching problem where some edges are given zero cost. A special case is when the vertices with probability 1 – p have a zero cost loop, for this problem we prove that the expected cost is given by a formula.
- In Paper 3 we define the polymatroid assignment problem and give a formula for calculating all moments of its cost.
- In Paper 4 we present a computer enumeration of the 197 isometric equivalence classes of the perfect codes of length 31 of rank 27 and with a kernel of dimension 24.
- In Paper 5 we investigate when it is possible to map two perfect codes on each other using a non-singular linear map.
- In Paper 6 we give an invariant for the equivalence classes of all perfect codes of all lengths when linear equivalence is considered.
- In Paper 7 we give an invariant for the equivalence classes of all perfect codes of all lengths when extended equivalence is considered.
- In Paper 8 we define a class of perfect codes that we call FRH-codes. It is shown that each FRH-code is linearly equivalent to a so called Phelps code and that this class contains Phelps codes as a proper subset.

1. Concentration of the cost of a random matching problem$(function(){PrimeFaces.cw("OverlayPanel","overlay277088",{id:"formSmash:j_idt485:0:j_idt489",widgetVar:"overlay277088",target:"formSmash:j_idt485:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. LP-relaxed matching with zero-cost loops$(function(){PrimeFaces.cw("OverlayPanel","overlay277090",{id:"formSmash:j_idt485:1:j_idt489",widgetVar:"overlay277090",target:"formSmash:j_idt485:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. The polymatroid assignment problem$(function(){PrimeFaces.cw("OverlayPanel","overlay277094",{id:"formSmash:j_idt485:2:j_idt489",widgetVar:"overlay277094",target:"formSmash:j_idt485:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. A computer study of some 1-error correcting perfect binary codes$(function(){PrimeFaces.cw("OverlayPanel","overlay252450",{id:"formSmash:j_idt485:3:j_idt489",widgetVar:"overlay252450",target:"formSmash:j_idt485:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Perfect codes as isomorphic spaces$(function(){PrimeFaces.cw("OverlayPanel","overlay277115",{id:"formSmash:j_idt485:4:j_idt489",widgetVar:"overlay277115",target:"formSmash:j_idt485:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. On the classification of perfect codes: Side class structures$(function(){PrimeFaces.cw("OverlayPanel","overlay271029",{id:"formSmash:j_idt485:5:j_idt489",widgetVar:"overlay271029",target:"formSmash:j_idt485:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. On the classification of perfect codes: Extended side class structures$(function(){PrimeFaces.cw("OverlayPanel","overlay277119",{id:"formSmash:j_idt485:6:j_idt489",widgetVar:"overlay277119",target:"formSmash:j_idt485:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

8. On linear equivalence and Phelps codes$(function(){PrimeFaces.cw("OverlayPanel","overlay277120",{id:"formSmash:j_idt485:7:j_idt489",widgetVar:"overlay277120",target:"formSmash:j_idt485:7:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1151",{id:"formSmash:j_idt1151",widgetVar:"widget_formSmash_j_idt1151",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1210",{id:"formSmash:lower:j_idt1210",widgetVar:"widget_formSmash_lower_j_idt1210",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1211_j_idt1213",{id:"formSmash:lower:j_idt1211:j_idt1213",widgetVar:"widget_formSmash_lower_j_idt1211_j_idt1213",target:"formSmash:lower:j_idt1211:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});