liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Show others and affiliations
2009 (English)In: SENSORS, ISSN 1424-8220, Vol. 9, no 11, 8911-8923 p.Article in journal (Refereed) Published
Abstract [en]

ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells.

Place, publisher, year, edition, pages
2009. Vol. 9, no 11, 8911-8923 p.
Keyword [en]
ZnO nanotubes, ZnO nanorods, pH sensors, potentiometric measurements
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-52415DOI: 10.3390/s91108911OAI: oai:DiVA.org:liu-52415DiVA: diva2:285071
Available from: 2010-01-11 Created: 2009-12-18 Last updated: 2014-10-01
In thesis
1. Mechanical Characterization and Electrochemical Sensor Applications of Zinc Oxide Nanostructures
Open this publication in new window or tab >>Mechanical Characterization and Electrochemical Sensor Applications of Zinc Oxide Nanostructures
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nanotechnology is emerging to be one of the most important scientific disciplines that physics, chemistry and biology truly overlap with each other. Over the last two decades science and technology have witnessed tremendous improvement in the hope of unveiling the true secrets of the nature in molecular or atomic level. Today, the regime of nanometer is truly reached.

ZnO is a promising material due to the wide direct band gap (3.37 eV) and the room temperature large exciton binding energy (60 meV). Recent studies have shown considerable attraction towards ZnO nanostructures, particularly on one-dimensional ZnO nanorods, nanowires, and nanotubes due to the fact that, for a large number of applications, shape and size of the ZnO nanostructures play a vital role for the performance of the devices. The noncentrosymmetric property of ZnO makes it an ideal piezoelectric material for nanomechanical devices. Thus, mechanical characterization of one dimensional ZnO nanostructures including strength, toughness, stiffness, hardness, and adhesion to the substrate is very important for the reliability and efficient operation of piezoelectric ZnO nanodevices. Moreover, owing to the large effective surface area with high surface-to-volume ratio, the surface of one dimensional ZnO nanowires, nanorods, and nanotubes is very sensitive to the changes in surface chemistry and hence can be utilized to fabricate highly sensitive ZnO electrochemical sensors.

This thesis studies mechanical properties and electrochemical sensor applications of ZnO nanostructures.

The first part of the thesis deals with mechanical characterization of vertically grown ZnO nanorods and nanotubes including buckling, mechanical instability, and bending flexibility. In paper I, we have investigated mechanical instability and buckling characterization of vertically aligned single-crystal ZnO nanorods grown on Si, SiC, and sapphire substrates by vapor-liquid-solid (VLS) method. The critical loads for the ZnO nanorods grown on Si, SiC, and sapphire were measured and the corresponding buckling and adhesion energies were calculated. It was found that the nanorods grown on SiC substrate have less residual stresses and are more stable than the nanorods grown on Si and sapphire substrates.

Paper II investigates nanomechanical tests of bending flexibility, kinking, and buckling failure characterization of vertically aligned single crystal ZnO nanorods/nanowires grown by VLS and aqueous chemical growth (ACG) methods. We observed that the loading and unloading behaviors during the bending test of the as-grown samples were highly symmetrical and the highest point on the bending curves and the first inflection and critical point were very close. The results also show that the elasticity of the ZnO single crystal is approximately linear up to the first inflection point and is independent of the growth method.

In Paper III, we quantitatively investigated the buckling and the elastic stability of vertically well aligned ZnO nanorods and ZnO nanotubes grown on Si substrate by nanoindentation technique. We found that the critical load for the nanorods was five times larger than the critical load for nanotubes. On the contrary, the flexibility for nanotubes was five times larger than nanorods. The discovery of high flexibility for nanotubes and high elasticity for nanorods can be utilized for designing efficient piezoelectric nanodevices.

The second part of this thesis investigates electrochemical sensor applications of ZnO nanorods, nanotubes , and nanoporous material.

In paper IV, we utilized functionalized ZnO nanorods on the tip of a borosilicate glass capillary coated with ionophore-membrane to construct intracellular Ca2+ selective sensor. The sensor exhibited a Ca2+-dependent electrochemical potential difference and the response was linear over a large dynamic concentration range, which enabled this sensor to measure Ca2+ concentrations in human adipocytes or in frog oocytes. The results were consistent with the values of Ca2+ concentrations reported in the literature.

In paper V, ZnO nanotubes and nanorods were used to create pH sensor devices. The developed ZnO pH sensors display good reproducibility, repeatability, and long-term stability. The ZnO pH sensors exhibited a pH-dependent electrochemical potential difference over a large dynamic pH range. We found that the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods. The possible reasons of enhanced sensitivity were explained.

Paper VI investigates an improved potentiometric intracellular glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanoporous material. We demonstrated that using ZnO nanoporous material as a matrix material for enzyme immobilization improves the sensitivity of the biosensor as compared to using ZnO nanorods. In addition, the fabrication method of the intracellular biosensor was simple and excellent performance in sensitivity, stability, selectivity, reproducibility, and anti-interference was achieved.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 61 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1323
Keyword
Nanotechnology, Zinc Oxide, nanorods, nanotubes, nanoporous, buckling, electrochemical sensor
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-57297 (URN)978-91-7393-369-8 (ISBN)
Public defence
2010-06-04, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15
Opponent
Supervisors
Available from: 2010-06-16 Created: 2010-06-16 Last updated: 2014-01-15Bibliographically approved

Open Access in DiVA

fulltext(4511 kB)126 downloads
File information
File name FULLTEXT01.pdfFile size 4511 kBChecksum SHA-512
ea3512806812b626a3843576c57bb327456721c420050d7edd619981c4f099f94f0fd4ea94be271da2f93de7e3ca278e1b992c296cb66c7a450686c1b56b77f3
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Fulati, AlimujiangUsman Ali, Syed MRiaz, MuhammadAmin, GulNour, OmerWillander, Magnus

Search in DiVA

By author/editor
Fulati, AlimujiangUsman Ali, Syed MRiaz, MuhammadAmin, GulNour, OmerWillander, Magnus
By organisation
Department of Science and TechnologyThe Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 126 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 227 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf