liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
A functional-PCA approach for analyzing and reducing complex chemical mechanisms
Queens University, Canada.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-1399-9872
Queens University, Canada.
Queens University, Canada.
2006 (English)In: Computers and Chemical Engineering, ISSN 0098-1354, Vol. 30, no 07-Jun, 1093-1101 p.Article in journal (Refereed) Published
Abstract [en]

In industrial reactive flow systems such as furnaces and gas turbines, there are considerable variations in the temperature and concentrations of species along different spatial directions. Functional principal component analysis (fPCA) can be used to study the temporal (or spatial) evolution of reactions in a reactive flow system, and to develop simplified kinetic models to describe this behaviour. A comprehensive kinetic mechanism for CO oxidation is used to demonstrate application of fPCA to identify important reactions as a function of time. In conventional PCA, the eigenvalue-eigenvector decomposition specifically transforms the variations associated with the time (or spatial directions) and species into loadings that represent only the reactions. However, fPCA produces functional loading vectors (xi) over bar (1)(t) which are functions of time or distance, whose elements are referred to as functional loadings. The functional loading vectors are the eigenfunctions of the covariance matrix associated with the sensitivity trajectories. The functional loadings are used to identify reactions playing a significant role, possibly as a function of time, and are used to develop a reduced kinetic scheme from a detailed kinetic mechanism.

Place, publisher, year, edition, pages
2006. Vol. 30, no 07-Jun, 1093-1101 p.
Keyword [en]
modelling; kinetics; model reduction; pollution; sensitivity analysis; principal component analysis; functional principal component analysis
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-53635DOI: 10.1016/j.compchemeng.2006.02.007OAI: diva2:290298
Available from: 2010-01-26 Created: 2010-01-26 Last updated: 2013-08-28

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lawrence, David
By organisation
Department of Physics, Chemistry and BiologyThe Institute of Technology
In the same journal
Computers and Chemical Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 40 hits
ReferencesLink to record
Permanent link

Direct link