liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prostaglandin E2 in Brain-mediated Illness Responses
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences. (Anders Blomqvist)
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

We are unceasingly exposed to potentially harmful microorganisms. The battle against threatening infectious agents includes activation of both the innate and of the adaptive immune systems. Illness responses are elicited and include inflammation, fever, decreased appetite, lethargy and increased sensitivity to painful stimuli in order to defeat invaders. While many of these signs of disease are controlled by the central nervous system, it has remained an enigma how signals from the peripheral immune system reach the brain through its blood-brain barrier, which precludes macromolecules, including cytokines, from diffusing into the brain parenchyma.

Previous findings indicate the existence of a pathway across the blood-brain barrier, which includes binding of the cytokine interleukin-1 (IL-1) to its receptor in the brain vessels, thereby inducing the production of the prostaglandin E2 (PGE2) synthesizing enzymes cyclooxygenase-2 (Cox-2) and microsomal prostaglandin E synthase-1 (mPGES-1), which ultimately synthesize PGE2. PGE2 subsequently binds to any of the four prostaglandin E2 (EP) -receptors. Previous results from our laboratory have suggested that this pathway plays a critical role in the febrile response to infectious stimuli. The present thesis aims at further investigating the molecular events underlying immune-to-brain signalling, with special emphasis on fever, hypothalamic-pituitary-adrenal (HPA) -axis activation and anorexia and their connection to signalling molecules of the cytokine and prostaglandin families, respectively.

In paper I, the molecular processes linking the proinflammatory cytokine interleukin-6 (IL-6) and PGE2 in the febrile response were investigated. Both IL-6 and PGE2 have been shown to be critical players in the febrile response, although the molecular connections are not known, i.e. if IL-6 exerts its effects up- or downstream of PGE2. Mice deficient in IL-6 were unable to respond to bacterial lipopolysaccharide (LPS) with a febrile response, but displayed similar induction of Cox-2 and mPGES-1, and similar concentrations of PGE2 in the cerebrospinal fluid as wild-type mice. Paradoxically, the IL-6 deficient mice responded with a dose-dependent elevation of body temperature in response to intracerebroventricularly injected PGE2. Furthermore, IL-6 per se was not pyrogenic when injected peripherally in mice, and did not cause increased levels of PGE2 in cerebrospinal fluid. IL-6 deficient mice were not refractory to the action of PGE2 because of excess production of some hypothermia-producing factor, since administration of a Cox-2 inhibitor in LPS-challenged IL-6 deficient mice did not unmask any hypothermic response, and neutralization of tumor necrosis factor α (TNFα), associated with hypothermia, did not produce fever in LPS-challenged IL-6 deficient mice. These data indicate that IL-6 rather than exerting its effects up- or down-stream of PGE2 affects some process in parallel to PGE2, perhaps by influencing the diffusion and binding of PGE2 onto its target neurons.

In papers II and III, we injected the proinflammatory cytokine IL-1β in free-fed wild-type mice, in mice with a deletion of the gene encoding mPGES-1, or in mice deficient in the EP1, EP2 and EP3. Food intake was continuously measured during their active period, revealing that mPGES-1 deficient mice were almost completely resistant to anorexia induced by IL-1β. However, all of the investigated EP receptor deficient mice exhibited a normal profound anorexic response to IL-1β challenge, suggesting that the EP4 is the critical receptor that mediates IL-1β-induced anorexia. We also investigated the role of mPGES-1 in anorexia induced by lipopolysaccharide (LPS) in mPGES-1 deficient mice. The profound anorexic response after LPS-challenge was similar in mPGES-1 deficient and wild-type mice. To further investigate the anorectic behaviour after LPS injection, we pre-starved the animals for 22 hours before injecting them with LPS. In this paradigm, the anorexia was less profound in mPGES-1 knock-out mice. Our results suggest that while the inflammatory anorexia elicited by peripheral IL-1β seems largely to be dependent on mPGES-1-mediated PGE2 synthesis, similar to the febrile response, the LPS-induced anorexia is independent of this mechanism in free-fed mice but not in pre-starved animals.

In papers IV and V, the role of prostanoids for the immune-induced HPA-axis response was investigated in mice after genetic deletion or pharmacological inhibition of prostanoid-synthesizing enzymes, including Cox-1, Cox-2, and mPGES-1. The immediate LPS-induced release of ACTH (adrenocorticotropic hormone and corticosteroids was critically dependent on Cox-1 derived prostanoids and occurred independently of Cox-2 and mPGES-1 derived PGE2. In contrast, the delayed HPA-axis response was critically dependent on immune-induced PGE2, synthesized by Cox-2 and mPGES-1, and occurred independently of Cox-1 derived enzymes. In addition, in the mPGES-1 deficient mice, the synthesis of CRH hnRNA and mRNA was decreased in the paraventricular nucleus of the hypothalamus after LPS-challenge, indicating that the delayed hormone secretion was mediated by PGE2-induced gene-transcription of CRH in the hypothalamus. The expression of the c-fos gene and Fos protein, an index of synaptic activation, was maintained in the paraventricular nucleus and its brainstem afferents both after unselective and Cox-2 selective inhibition as well as in Cox-1, Cox-2, and mPGES-1 knock-out mice. This suggests that the immune-induced neuronal activation of autonomic relay nuclei occurs independently of prostanoid synthesis and that it is insufficient for eliciting stress hormone release.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press , 2010. , 86 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1162
Keyword [en]
prostaglandin e2, PGE2, cox-1, cox-2, mPGES-1, fever, anorexia, food intake, HPA-axis, EP-receptor, LPS, IL-1, IL-6
National Category
Medical and Health Sciences Physiology
Identifiers
URN: urn:nbn:se:liu:diva-53701ISBN: 978-91-7393-462-6 (print)OAI: oai:DiVA.org:liu-53701DiVA: diva2:291295
Public defence
2010-02-26, Berzeliussalen, Ingång 65, Hälsouniversitetet, Campus US, Linköpings Universitet, Linköping, 13:00 (Swedish)
Opponent
Supervisors
Available from: 2010-02-11 Created: 2010-02-01 Last updated: 2010-02-11Bibliographically approved
List of papers
1. The Role of Interleukin-6 in Lipopolysaccharide-Induced Fever by Mechanisms Independent of Prostaglandin E-2
Open this publication in new window or tab >>The Role of Interleukin-6 in Lipopolysaccharide-Induced Fever by Mechanisms Independent of Prostaglandin E-2
Show others...
2009 (English)In: Endocrinology, ISSN 0013-7227, E-ISSN 1945-7170, Vol. 150, no 4, 1850-1860 p.Article in journal (Refereed) Published
Abstract [en]

Fever has been shown to be elicited by prostaglandin E-2 (PGE(2)) binding to its receptors on thermoregulatory neurons in the anterior hypothalamus. The signals that trigger PGE(2) production are thought to include proinflammatory cytokines, such as IL-6. However, although the presence of IL-6 is critical for fever, IL- 6 by itself is not or only weakly pyrogenic. Here we examined the relationship between IL-6 and PGE(2) in lipopolysaccharide (LPS)-induced fever. Immune-challenged IL- 6 knockout mice did not produce fever, in contrast to wild-type mice, but the expression of the inducible PGE(2)-synthesizing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase-1, was similarly up-regulated in the hypothalamus of both genotypes, which also displayed similarly elevated PGE(2) levels in the cerebrospinal fluid. Nevertheless, both wild-type and knockout mice displayed a febrile response to graded concentrations of PGE(2) injected into the lateral ventricle. There was no major genotype difference in the expression of IL-1 beta and TNF alpha or their receptors, and pretreatment of IL- 6 knockout mice with soluble TNF alpha receptor ip or intracerebroventricularly or a cyclooxygenase-2 inhibitor ip did not abolish the LPS unresponsiveness. Hence, although IL- 6 knockout mice have both an intact PGE(2) synthesis and an intact fever-generating pathway downstream of PGE(2), endogenously produced PGE(2) is not sufficient to produce fever in the absence of IL-6. The findings suggest that IL- 6 controls some factor(s) in the inflammatory cascade, which render(s) IL- 6 knockout mice refractory to the pyrogenic action of PGE(2), or that it is involved in the mechanisms that govern release of synthesized PGE(2) onto its target neurons.

National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-17620 (URN)10.1210/en.2008-0806 (DOI)
Available from: 2009-04-07 Created: 2009-04-06 Last updated: 2016-05-04
2. IL-1β and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1
Open this publication in new window or tab >>IL-1β and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1
2007 (English)In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology, ISSN 0363-6119, Vol. 292, no 1, R258-R267 p.Article in journal (Refereed) Published
Abstract [en]

Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1β or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E2 by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1β, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1β induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wildtype controls. These data suggest that IL-1β and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1β and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions. Copyright © 2007 the American Physiological Society.

National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-40485 (URN)10.1152/ajpregu.00511.2006 (DOI)53365 (Local ID)53365 (Archive number)53365 (OAI)
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2010-02-11
3. Prostaglandin E2 receptors in IL-1β induced anorexia
Open this publication in new window or tab >>Prostaglandin E2 receptors in IL-1β induced anorexia
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Anorexia in response to immune challenge by Interleukin-1β (IL-1β) has been shown to be dependent on Prostaglandin E2 (PGE2) produced by the inducible enzyme microsomal prostaglandin E synthase-1 (mPGES-1). However, it is not known which of the four known PGE2 receptors EP1-4, encoded by the genes Ptger 1-4, that mediates the PGE2-induced anorexia. Here we examined food intake in mice deficient in EP1, EP2 and EP3, respectively, during normal conditions and following treatment with IL-1β. Neither of the gene deletions affected baseline food intake, and all the three genotypes displayed anorexia following IL-1β injection, similar to wild type mice. Previous work has demonstrated that the EP3 receptor is critical for the generation of fever, and that EP1 and EP3 receptors mediate inflammationinduced activation of the hypothalamic-pituitary-adrenal (HPA) axis. The present data, showing intact anorexigenic responses in EP1 and EP3 deficient mice, as well as in mice with deletion of the EP2 receptor, hence suggest that PGE2-elicited acute phase responses are mediated by distinct set or sets of PGE2-receptors.

National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-53910 (URN)
Available from: 2010-02-11 Created: 2010-02-11 Last updated: 2010-02-11Bibliographically approved
4. Inducible Prostaglandin E-2 Synthesis Interacts in a Temporally Supplementary Sequence with Constitutive Prostaglandin-Synthesizing Enzymes in Creating the Hypothalamic-Pituitary-Adrenal Axis Response to Immune Challenge
Open this publication in new window or tab >>Inducible Prostaglandin E-2 Synthesis Interacts in a Temporally Supplementary Sequence with Constitutive Prostaglandin-Synthesizing Enzymes in Creating the Hypothalamic-Pituitary-Adrenal Axis Response to Immune Challenge
Show others...
2009 (English)In: Journal of Neuroscience, ISSN 0270-6474, Vol. 29, no 5, 1404-1413 p.Article in journal (Refereed) Published
Abstract [en]

Inflammation-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis has been suggested to depend on prostaglandins, but the prostaglandin species and the prostaglandin-synthesizing enzymes that are responsible have not been fully identified. Here, we examined HPA axis activation in mice after genetic deletion or pharmacological inhibition of prostaglandin E-2-synthesizing enzymes, including cyclooxygenase-1 (Cox-1), Cox-2, and microsomal prostaglandin E synthase-1 (mPGES-1). After immune challenge by intraperitoneal injection of lipopolysaccharide, the rapid stress hormone responses were intact after Cox-2 inhibition and unaffected by mPGES-1 deletion, whereas unselective Cox inhibition blunted these responses, implying the involvement of Cox-1. However, mPGES-1-deficient mice showed attenuated transcriptional activation of corticotropin-releasing hormone (CRH) that was followed by attenuated plasma concentrations of adrenocorticotropic hormone and corticosterone. Cox-2 inhibition similarly blunted the delayed corticosterone response and further attenuated corticosterone release in mPGES-1 knock-out mice. The expression of the c-fos gene, an index of synaptic activation, was maintained in the paraventricular hypothalamic nucleus and its brainstem afferents both after unselective and Cox-2 selective inhibition as well as in Cox-1, Cox-2, and mPGES-1 knock-out mice. These findings point to a mechanism by which ( 1) neuronal afferent signaling via brainstem autonomic relay nuclei and downstream Cox-1-dependent prostaglandin release and ( 2) humoral, CRH transcription-dependent signaling through induced Cox-2 and mPGES-1 elicited PGE(2) synthesis, shown to occur in brain vascular cells, play distinct, but temporally supplementary roles for the stress hormone response to inflammation.

Keyword
CRH, ACTH, corticosterone, mPGES-1, LPS, Fos
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-16849 (URN)10.1523/JNEUROSCI.5247-08.2009 (DOI)
Available from: 2009-02-21 Created: 2009-02-20 Last updated: 2016-05-04
5. Cyclooxygenase-1 mediates the immediate corticosterone response to peripheral immune challenge induced by lipopolysaccharide
Open this publication in new window or tab >>Cyclooxygenase-1 mediates the immediate corticosterone response to peripheral immune challenge induced by lipopolysaccharide
Show others...
2010 (English)In: Neuroscience letters, ISSN 1872-7972, Vol. 470, no 1, 10-2 p.Article in journal (Refereed) Published
Abstract [en]

Immune-induced activation of the hypothalamus-pituitary-adrenal axis is mediated by cyclooxygenase derived prostaglandins. Here we examined the role of cyclooxygenase-1 in this response, by using genetically modified mice as well as pharmacological inhibition. We found that mice with a deletion of the gene encoding cyclooxygenase-1, in contrast to wild type mice, did not show increased plasma corticosterone at 1h after immune challenge by peripheral injection of bacterial wall lipopolysaccharide, whereas the corticosterone levels were similarly elevated in both genotypes at 6h post-injection. Pretreatment of mice with the selective cyclooxygenase-1 inhibitor SC-560, given orally, likewise inhibited the rapid corticosterone response. These findings, taken together with our recent demonstration that the delayed stress hormone response to immune challenge is dependent on cyclooxygenase-2, show that the two cyclooxygenase isoforms play distinct, but temporally supplementary roles for the stress hormone response to inflammation.

Keyword
Corticosterone; Hypothalamus–pituitary–adrenal axis; Mouse; Cyclooxygenase; Lipopolysaccharide
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-53911 (URN)10.1016/j.neulet.2009.12.036 (DOI)000274947500003 ()20034541 (PubMedID)
Available from: 2010-02-11 Created: 2010-02-11 Last updated: 2010-03-12

Open Access in DiVA

Prostaglandin E2 in Brain-mediated Illness Responses(901 kB)811 downloads
File information
File name FULLTEXT01.pdfFile size 901 kBChecksum SHA-512
b5bf778715af1f7be65cf267558870840209e4b6da156ec6a029961b3f22b5b49ddba86e78d4b4f39af1224e73bf7bc3a17f68a91ac172310b1b4de156fb7335
Type fulltextMimetype application/pdf
Cover(223 kB)72 downloads
File information
File name COVER01.pdfFile size 223 kBChecksum SHA-512
880f60f270ef2cbaddc9b5c2b17380bd0c004cfc57ae0e50a3ae1008b5d66905ecdbd942a11586096ebe5656ce29908088d1181a699c6fe3e0e417d8dc44fcf2
Type coverMimetype application/pdf

Authority records BETA

Elander, Louise

Search in DiVA

By author/editor
Elander, Louise
By organisation
Cell BiologyFaculty of Health Sciences
Medical and Health SciencesPhysiology

Search outside of DiVA

GoogleGoogle Scholar
Total: 811 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2027 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf