liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Patterned Hydrogels for Controlled Platelet Adhesion from Whole Blood and Plasma
Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Chemistry.
Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2010 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 20, no 15, 2396-2403 p.Article in journal (Refereed) Published
Abstract [en]

This work describes the preparation and properties of hydrogel surface chemistries enabling controlled and well-defined cell adhesion. The hydrogels may be prepared directly on plastic substrates, such as polystyrene slides or dishes, using a quick and experimentally simple photopolymerization process, compatible with photolithographic and microfluidic patterning methods. The intended application for these materials is as substrates for diagnostic cell adhesion assays, particularly for the analysis of human platelet function. The adsorption of fibrinogen and other platelet promoting molecules is shown to be completely inhibited by the hydrogel, provided that the film thickness is sufficient (>5 nm). This allows the hydrogel to be used as a matrix for presenting selected bioactive ligands without risking interference from nonspecifically adsorbed platelet adhesion factors, even in undiluted whole blood and blood plasma. This concept is demonstrated by preparing patterns of proteins on hydrogel surfaces, resulting in highly controlled platelet adhesion. Further insights into the protein immobilization and platelet adhesion processes are provided by studies using imaging surface plasmon resonance. The hydrogel surfaces used in this work appear to provide an ideal platform for cell adhesion studies of platelets, and potentially also for other cell types.

Place, publisher, year, edition, pages
John Wiley & Sons , 2010. Vol. 20, no 15, 2396-2403 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-54301DOI: 10.1002/adfm.201000083ISI: 000281058900003OAI: oai:DiVA.org:liu-54301DiVA: diva2:302615
Available from: 2010-03-08 Created: 2010-03-08 Last updated: 2017-12-12
In thesis
1. Hydrogel coatings for biomedical and biofouling applications
Open this publication in new window or tab >>Hydrogel coatings for biomedical and biofouling applications
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Many applications share a substantial and yet unmet need for prediction and control of interactions between surfaces and proteins or living cells. Examples are blood-contacting biomaterials, biosensors, and non-toxic anti-biofouling coatings for ship hulls. The main focus of this thesis work has been the synthesis, characterization and properties of a group of coatings, designed for such applications. Many types of substrates, particularly plastics, were coated directly with ultrathin, hydrophilic polymer coatings, using a newly developed polymerization method initiated by short-wavelength ultraviolet light.

The thesis contains eight papers and an introduction aimed to provide a context for the research work. The common theme, discussed and analyzed throughout the work, has been the minimization of non-specific binding of proteins to surfaces, thereby limiting the risk of uncontrolled attachment of cells and higher organisms. This has mainly been accomplished through the incorporation of monomer units bearing poly(ethylene glycol) (PEG) side chains in the coatings. Such PEG-containing “protein resistant” coatings have been used in this work as matrices for biosensor applications, as blood-contacting inert surfaces and as antibiofouling coatings for marine applications, with excellent results. The properties of the coatings, and their interactions with proteins and cells, have been thoroughly characterized using an array of techniques such as infrared spectroscopy, ellipsometry, atomic force microscopy, surface plasmon resonance and neutron reflectometry. In addition, other routes to fabricate coatings with high protein resistance have also been utilized. For instance, the versatility of the fabrication method has enabled the design of gradients with varying electrostatic charge, affecting the protein adsorption and leading to protein resistance in areas where the charges are balanced.

This thesis also describes a novel application of imaging surface plasmon resonance for the investigation of the surface exploration behavior of marine biofouling organisms, in particular barnacle larvae. This technique allows for real-time assessment of the rate of surface exploration and the deposition of protein-based adhesives onto surfaces, a process which was previously very difficult to investigate experimentally. In this thesis, the method was applied to several model surface chemistries, including the hydrogels described above. The new method promises to provide insights into the interactions between biofouling organisms and a surface during the critical stages prior to permanent settlement, hopefully facilitating the development of antibiofouling coatings for marine applications.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 74 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1302
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-54304 (URN)978-91-7393-435-0 (ISBN)
Public defence
2010-03-19, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 00:00 (English)
Opponent
Supervisors
Available from: 2010-03-08 Created: 2010-03-08 Last updated: 2017-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ekblad, TobiasFaxälv, LarsAndersson, OlofLarsson (Kaiser), AndréasLindahl, Tomas L.Liedberg, Bo

Search in DiVA

By author/editor
Ekblad, TobiasFaxälv, LarsAndersson, OlofLarsson (Kaiser), AndréasLindahl, Tomas L.Liedberg, Bo
By organisation
Sensor Science and Molecular PhysicsThe Institute of TechnologyClinical ChemistryFaculty of Health SciencesDepartment of Clinical ChemistryMolecular PhysicsFaculty of Science & Engineering
In the same journal
Advanced Functional Materials
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 341 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf