liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Low Power High Bandwidth Power-Line Communication Network for Wearable Applications
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
School of Engineering Jönköping University Gjuterigatan 5 55318 Jönköping, Sweden.
SP Technical Research Institute of Sweden Brinellgatan 4 50115 Borås, Sweden.
2010 (English)Conference paper (Other academic)
Abstract [en]

A DC power-line communication (PLC) network for wearable applications is proposed and studied. The DC-PLC network enhances wearability compared to other types of wired networks by requiring minimum amount of wiring. The DC-PLC transceiver is designed based on a low power high bandwidth active inductance circuit, thus not jeopardizing the low power property of the wired solution. The DC-PLC network is implemented in a wearable application and compared to a wireless wearable network by studying and comparing the bit-energy of these networks. The bitenergy study is based on a statistical model of the communication where message size and rate, preamble time and power measurements are included. The DC-PLC network showed shorter latency and lower bit-energy compared to the wireless alternatives when preamble time is kept at reasonable level.

Place, publisher, year, edition, pages
Keyword [en]
DC Power-Line, Wearable Network, Energy-Efficiency
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-54450OAI: diva2:304021
BodyNets 2010 - Fifth International Conference on Body Area Networks, Greece, Sep. 10-12
SubmittedAvailable from: 2010-03-16 Created: 2010-03-16 Last updated: 2010-03-22
In thesis
1. Wearable Systems in Harsh Environments: Realizing New Architectural Concepts
Open this publication in new window or tab >>Wearable Systems in Harsh Environments: Realizing New Architectural Concepts
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wearable systems continue to gain new markets by addressing improved performance and lower size, weight and cost. Both civilian and military markets have incorporated wearable technologies to enhance and facilitate user's tasks and activities. A wearable system is a heterogeneous system composed of diverse electronic modules: data processing, input and output modules. The system is constructed to be body-borne and therefore, several constraints are put on wearable systems regarding wearability (size, weight, placement, etc.) and robustness rendering the task of designing wearable systems challenging. In this thesis, an overview of wearable systems was given by discussing definition, technology challenges, market analysis and design methodologies. Main research targeted at network architectures and robustness to environmental stresses and electromagnetic interference (EMI). The network architecture designated the data communication on the intermodule level - topology and infrastructure. A deeper analysis of wearable requirements on the network architecture was made and a new architecture is proposed based on DC power line communication network (DC-PLC). In addition, wired data communication was compared to wireless data communication by introducing statistical communication model and looking at multiple design attributes: power efficiency, scalability, and wearability.

The included papers focused on wearable systems related issues including analysis of present situation, environmental and electrical robustness studies, theoretical and computer aided modelling, and experimental testing to demonstrate new wearable architectural concepts. A roadmap was given by examining the past and predicting the future of wearable systems in terms of technology, market, and architecture. However, the roadmap was updated within this thesis to include new market growth figures that proved to be far less than was predicted in 2004. User and application environmental requirements to be applied on future wearable systems were identified. A procedure is presented to address EMI and evaluated solutions in wearable application through modelling and simulation. Environmental robustness and wearability of wearable systems in general, and washability and conductive textile in particular are investigated. A measurement-based methodology to model electrical properties of conductive textile when subjected to washing was given.

Employing a wired data communication network was found to be more appropriate for wearable systems than wireless networks when prioritizing power efficiency. The wearability and scalability of the wired networks was enhanced through conductive textile and DC-PLC, respectively. A basic wearable application was built to demonstrate the suitability of DC-PLC communication with conductive textile as infrastructure. The conductive textile based on metal filament showed better mechanical robustness than metal plated conductive textile. A more advanced wearable demonstrator, where DC-PLC network was implemented using transceivers, further strengthened the proposed wearable architecture. Based on the overview, the theoretical, modelling and experimental work, a possible approach of designing wearable systems that met several contradicting requirements was given.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 85 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1304
Wearable System, Wearable Network, DC Power Line Communication, Conductive Textile, Electromagnetic Coupling, Washability, Energy Efficiency, Triboelectric Noise
National Category
Engineering and Technology
urn:nbn:se:liu:diva-54461 (URN)978-91-7393-423-7 (ISBN)
Public defence
2010-05-11, TP51, Täppanhuset,, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Available from: 2010-03-22 Created: 2010-03-17 Last updated: 2010-03-22Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Chedid, Michel
By organisation
Department of Science and TechnologyThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 33 hits
ReferencesLink to record
Permanent link

Direct link