liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Evaluation of Conductive Textile for Wearable Computer Applications
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Acreo AB, Sweden.
School of Engineering, Jönköping University, Jönköping, Sweden.
2006 (English)In: The IMAPS Nordic Annual Conference, 2006, 220-227 p.Conference paper (Refereed)
Abstract [en]

Wearable systems put high demands on wearability and robustness. Conductive fabrics are very likely to be used in wearable systems due to their textile-like characteristics. However conductive fabrics must be able to resist environmental stresses (wearing, laundering, etc.) in the same way as clothing in order to fully comply with the requirements.

A demonstrator, TxWear, was constructed to exploit conductive fabrics in building a conductive textile transmission line for intermodular communication and power transmission (DC power line communication bus), thus eliminating the need for cables between the modules. The hardware modules are connected to the conductive line through connectors from textile industry, i.e., snap fasteners. Different types of conductive fabrics (Ni/Cu plated polyester fabrics and stainless-steel based elastic ribbon) were evaluated and compared according to their conductivity, flexibility and robustness characteristics. The effect of washing on the electrical properties (per-unit-length parameters) of the textile transmission line was studied. Different coating processes, i.e., parylene and silicone coating, were studied and evaluated in order to isolate and enhance the robustness of the conductive textile. Ni/Cu plated polyester ripstop fabric was found to be not appropriate for wearable applications, while conductive elastic ribbon showed good robustness to laundry induced stresses.

Place, publisher, year, edition, pages
2006. 220-227 p.
Keyword [en]
Wearable computer, conductive textile, robustness, washing, power line communication
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-54459ISBN: 951-98002-9-8ISBN: 951-9800-0-4OAI: diva2:304083
The IMAPS Nordic Annual Conference 2006, Gothenburg, Sweden, Sep. 17-19
Available from: 2010-03-17 Created: 2010-03-17 Last updated: 2010-03-22
In thesis
1. Wearable Systems in Harsh Environments: Realizing New Architectural Concepts
Open this publication in new window or tab >>Wearable Systems in Harsh Environments: Realizing New Architectural Concepts
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wearable systems continue to gain new markets by addressing improved performance and lower size, weight and cost. Both civilian and military markets have incorporated wearable technologies to enhance and facilitate user's tasks and activities. A wearable system is a heterogeneous system composed of diverse electronic modules: data processing, input and output modules. The system is constructed to be body-borne and therefore, several constraints are put on wearable systems regarding wearability (size, weight, placement, etc.) and robustness rendering the task of designing wearable systems challenging. In this thesis, an overview of wearable systems was given by discussing definition, technology challenges, market analysis and design methodologies. Main research targeted at network architectures and robustness to environmental stresses and electromagnetic interference (EMI). The network architecture designated the data communication on the intermodule level - topology and infrastructure. A deeper analysis of wearable requirements on the network architecture was made and a new architecture is proposed based on DC power line communication network (DC-PLC). In addition, wired data communication was compared to wireless data communication by introducing statistical communication model and looking at multiple design attributes: power efficiency, scalability, and wearability.

The included papers focused on wearable systems related issues including analysis of present situation, environmental and electrical robustness studies, theoretical and computer aided modelling, and experimental testing to demonstrate new wearable architectural concepts. A roadmap was given by examining the past and predicting the future of wearable systems in terms of technology, market, and architecture. However, the roadmap was updated within this thesis to include new market growth figures that proved to be far less than was predicted in 2004. User and application environmental requirements to be applied on future wearable systems were identified. A procedure is presented to address EMI and evaluated solutions in wearable application through modelling and simulation. Environmental robustness and wearability of wearable systems in general, and washability and conductive textile in particular are investigated. A measurement-based methodology to model electrical properties of conductive textile when subjected to washing was given.

Employing a wired data communication network was found to be more appropriate for wearable systems than wireless networks when prioritizing power efficiency. The wearability and scalability of the wired networks was enhanced through conductive textile and DC-PLC, respectively. A basic wearable application was built to demonstrate the suitability of DC-PLC communication with conductive textile as infrastructure. The conductive textile based on metal filament showed better mechanical robustness than metal plated conductive textile. A more advanced wearable demonstrator, where DC-PLC network was implemented using transceivers, further strengthened the proposed wearable architecture. Based on the overview, the theoretical, modelling and experimental work, a possible approach of designing wearable systems that met several contradicting requirements was given.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 85 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1304
Wearable System, Wearable Network, DC Power Line Communication, Conductive Textile, Electromagnetic Coupling, Washability, Energy Efficiency, Triboelectric Noise
National Category
Engineering and Technology
urn:nbn:se:liu:diva-54461 (URN)978-91-7393-423-7 (ISBN)
Public defence
2010-05-11, TP51, Täppanhuset,, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Available from: 2010-03-22 Created: 2010-03-17 Last updated: 2010-03-22Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Chedid, Michel
By organisation
Department of Science and TechnologyThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 68 hits
ReferencesLink to record
Permanent link

Direct link