liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of the Ni/V(TCNE)x interface for hybrid spintronics applications
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
Show others and affiliations
2010 (English)In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 11, no 6, 1020-1024 p.Article in journal (Refereed) Published
Abstract [en]

Vanadium tetracyanoethylene, V(TCNE)x, is an organic-based magnet with properties suitable for spintronics applications, e.g. spin valves. In this paper we propose a new hybrid organic spin valve design where V(TCNE)x is used as a spin-transporting and spin-filtering layer sandwiched between two ferromagnetic (FM) metal contacts, i.e. FM/V(TCNE)x/FM. As the spin injection and detection of such a device occurs at the interfaces the quality of those are of crucial importance. Therefore, the Ni/V(TCNE)x interface has been investigated by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption spectroscopy (NEXAFS) as well as compared with XPS results from a model system, Ni/TCNE. Ni chemically interact with both the vinyl and cyano groups but there is no evidence for significant diffusion of Ni into the V(TCNE)x film. As the chemical interaction affects the spin injection and detection negatively by modifying the lowest unoccupied molecular orbital (LUMO) and destroying the magnetic ordering network at the surface, these results indicate that there is need for a buffer layer between V(TCNE)x and Ni, and in extension most likely between V(TCNE)x and any FM contact.

Place, publisher, year, edition, pages
2010. Vol. 11, no 6, 1020-1024 p.
Keyword [en]
Organic-based molecular magnets; Spintronics; Interfaces; Photoelectron spectroscopy; Magnetic semiconductors
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-56259DOI: 10.1016/j.orgel.2010.03.001ISI: 000277935200008OAI: oai:DiVA.org:liu-56259DiVA: diva2:317829
Note

Original Publication: Elin Carlegrim, Yiqiang Zhan, Fenghong Li, Xianjie Liu and Mats Fahlman, Characterization of the Ni/V(TCNE)x interface for hybrid spintronics applications, 2010, Organic electronics, (11), 6, 1020-1024. http://dx.doi.org/10.1016/j.orgel.2010.03.001 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/

Available from: 2010-05-05 Created: 2010-05-05 Last updated: 2017-12-12
In thesis
1. Development of Organic-Based Thin Film Magnets for Spintronics
Open this publication in new window or tab >>Development of Organic-Based Thin Film Magnets for Spintronics
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the growing field of spintronics, development of semiconducting magnets is a high priority. Organic-based molecular magnets are attractive candidates since their properties can be tailor-made by organic chemistry. Other advantages include low weight and low temperature processing. Vanadium tetracyanoethylene, V(TCNE)x, x~2, is particularly interesting since it is one of very few semiconducting magnets with magnetic ordering above room temperature.

The aim of the research presented in this thesis was to prepare and characterize thin film organic-based magnets with focus on V(TCNE)x. Photoelectron and absorption spectroscopy studies were performed leading to a more complete picture of the electronic and chemical structure of the material. Depending on the preparation method of V(TCNE)x, the material contains varying amounts of disorder which among other things makes it very air sensitive. In this thesis, a new preparation method for organic-based magnets based on physical vapor deposition is presented and the first result shows that it generates less air sensitive V(TCNE)x than previous methods reported. A new spin valve design based on V(TCNE)x was proposed where the material delivers both spin-filtering and spin-transporting functionality, making use of its fully spin-polarized transport levels. In such devices, the interface of V(TCNE)x with ferromagnetic metals is of great importance and was hence studied. As vanadium ions always are very reactive towards oxygen, substituting vanadium by a less reactive ion would be desirable from both an interface engineering and device packaging perspective. Very few alternatives exist however that orders magnetically above room temperature. In order to find out what are the key design criteria for preparing thin film semiconducting room temperature magnets, we have begun to study systems which order magnetically much below room temperature and compared them with V(TCNE)x.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 49 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1317
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-56262 (URN)978-91-7393-385-8 (ISBN)
Public defence
2010-05-25, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2010-05-05 Created: 2010-05-05 Last updated: 2010-05-05Bibliographically approved

Open Access in DiVA

fulltext(219 kB)563 downloads
File information
File name FULLTEXT01.pdfFile size 219 kBChecksum SHA-512
e66adf5df64ab92d6421d0438d54314037d8bce42ff5a008b8fb1fe8c2b6186ea4b759a81f6fe55f6e555b46cf0c78a3e34d079ea52fbcc92834e3166f2b19c3
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Carlegrim, ElinZhan, YiqiangLi, FenghongLiu, XianjieFahlman, Mats

Search in DiVA

By author/editor
Carlegrim, ElinZhan, YiqiangLi, FenghongLiu, XianjieFahlman, Mats
By organisation
Surface Physics and ChemistryThe Institute of Technology
In the same journal
Organic electronics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 563 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 471 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf