liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Blind Equalization by Direct Examination of the Input Sequences
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
1995 (English)In: IEEE Transactions on Communications, ISSN 0090-6778, E-ISSN 1558-0857, Vol. 43, no 7, 2213-2222 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents a novel approach to blind equalization (deconvolution), which is based on direct examination of possible input sequences. In contrast to many other approaches, it does not rely on a model of the approximative inverse of the channel dynamics. To start with, the blind equalization identifiability problem for a noise-free finite impulse response channel model is investigated. A necessary condition for the input, which is algorithm independent, for blind deconvolution is derived. This condition is expressed in an information measure of the input sequence. A sufficient condition for identifiability is also inferred, which imposes a constraint on the true channel dynamics. The analysis motivates a recursive algorithm where all permissible input sequences are examined. The exact solution is guaranteed to be found as soon as it is possible. An upper bound on the computational complexity of the algorithm is given. This algorithm is then generalized to cope with time-varying infinite impulse response channel models with additive noise. The estimated sequence is an arbitrary good approximation of the maximum a posteriori estimate. The proposed method is evaluated on a Rayleigh fading communication channel. The simulation results indicate fast convergence properties and good tracking abilities.

Place, publisher, year, edition, pages
1995. Vol. 43, no 7, 2213-2222 p.
Keyword [en]
Rayleigh channels, Computational complexity, Convergence of numerical methods, Deconvolution, Equalisers, Fading, Identification, Maximum likelihood estimation, Noise, Recursive estimation, Sequential estimation, Time-varying channels, Tracking, Transient response
National Category
Control Engineering
URN: urn:nbn:se:liu:diva-56353DOI: 10.1109/26.392964OAI: diva2:318603
Available from: 2010-05-09 Created: 2010-05-07 Last updated: 2013-07-29

Open Access in DiVA

No full text

Other links

Publisher's full textRelated report

Search in DiVA

By author/editor
Gustafsson, Fredrik
By organisation
Automatic ControlThe Institute of Technology
In the same journal
IEEE Transactions on Communications
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link