liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nonlinear Black-box Modeling in System Identification: a Unified Overview
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
IRISA/INRIA, Campus de Beaulieu, Rennes Cedex, France.
Show others and affiliations
1995 (English)In: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 31, no 12, 1691-1724 p.Article in journal (Refereed) Published
Abstract [en]

A nonlinear black-box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area, with structures based on neural networks, radial basis networks, wavelet networks and hinging hyperplanes, as well as wavelet-transform-based methods and models based on fuzzy sets and fuzzy rules. This paper describes all these approaches in a common framework, from a user's perspective. It focuses on what are the common features in the different approaches, the choices that have to be made and what considerations are relevant for a successful system-identification application of these techniques. It is pointed out that the nonlinear structures can be seen as a concatenation of a mapping form observed data to a regression vector and a nonlinear mapping from the regressor space to the output space. These mappings are discussed separately. The latter mapping is usually formed as a basis function expansion. The basis functions are typically formed from one simple scalar function, which is modified in terms of scale and location. The expansion from the scalar argument to the regressor space is achieved by a radial- or a ridge-type approach. Basic techniques for estimating the parameters in the structures are criterion minimization, as well as two-step procedures, where first the relevant basis functions are determined, using data, and then a linear least-squares step to determine the coordinates of the function approximation. A particular problem is to deal with the large number of potentially necessary parameters. This is handled by making the number of ‘used’ parameters considerably less than the number of ‘offered’ parameters, by regularization, shrinking, pruning or regressor selection.

Place, publisher, year, edition, pages
Elsevier, 1995. Vol. 31, no 12, 1691-1724 p.
Keyword [en]
Nonlinear systems, Model structures, Parameter estimation, Wavelets, Neural networks, Fuzzy modeling
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-56344DOI: 10.1016/0005-1098(95)00120-8OAI: oai:DiVA.org:liu-56344DiVA: diva2:318613
Available from: 2010-05-09 Created: 2010-05-07 Last updated: 2017-12-12

Open Access in DiVA

No full text

Other links

Publisher's full textRelated report

Authority records BETA

Ljung, Lennart

Search in DiVA

By author/editor
Ljung, Lennart
By organisation
Automatic ControlThe Institute of Technology
In the same journal
Automatica
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf