liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analys av ljudspektroskopisignaler med artificiella neurala eller bayesiska nätverk
Linköping University, Department of Physics, Chemistry and Biology.
2010 (Swedish)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Analysis of Acoustic Spectroscopy Signals using Artificial Neural or Bayesian Networks (English)
Abstract [sv]

Vid analys av fluider med akustisk spektroskopi finns ett behov av att finna multivariata metoder för att utifrån akustiska spektra prediktera storheter såsom viskositet och densitet. Användning av artificiella neurala nätverk och bayesiska nätverk för detta syfte utreds genom teoretiska och praktiska undersökningar. Förbehandling och uppdelning av data samt en handfull linjära och olinjära multivariata analysmetoder beskrivs och implementeras. Prediktionsfelen för de olika metoderna jämförs och PLS (Partial Least Squares) framstår som den starkaste kandidaten för att prediktera de sökta storheterna.

Abstract [en]

When analyzing fluids using acoustic spectrometry there is a need of finding multivariate methods for predicting properties such as viscosity and density from acoustic spectra. The utilization of artificial neural networks and Bayesian networks for this purpose is analyzed through theoretical and practical investigations. Preprocessing and division of data along with a handful of linear and non-linear multivariate methods of analysis are described and implemented. The errors of prediction for the different methods are compared and PLS (Partial Least Squares) appear to be the strongest candidate for predicting the sought-after properties.

Place, publisher, year, edition, pages
2010. , 54 p.
Keyword [en]
Acoustic Spectroscopy, Multivariate Statistical Analysis, Artificial Neural Networks, Bayesian Networks
Keyword [sv]
Akustisk spektroskopi, Multivariat statistisk analys, Artificiella neurala nätverk, Bayesiska nätverk
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:liu:diva-56429ISRN: LITH-IFM-A-EX--10/2282--SEOAI: oai:DiVA.org:liu-56429DiVA: diva2:320591
Presentation
2010-04-29, Planck, 09:15 (Swedish)
Uppsok
Technology
Examiners
Available from: 2010-05-27 Created: 2010-05-11 Last updated: 2011-05-18Bibliographically approved

Open Access in DiVA

fulltext(1335 kB)497 downloads
File information
File name FULLTEXT01.pdfFile size 1335 kBChecksum SHA-512
d61c1669dc4a5636a411a90fd6920b5b08a18f897dcda26432d464a7e6b01ec7ab9b8654439febc83c4cc5ba67efdc3f0f12f6fcb270d073e6c41e0b36d53c68
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Hagqvist, Petter
By organisation
Department of Physics, Chemistry and Biology
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 497 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 229 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf