liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Spatio-featural scale-space
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-6096-3648
2009 (English)Conference paper (Other academic)
Abstract [en]

Linear scale-space theory is the fundamental building block for many approaches to image processing like pyramids or scale-selection. However, linear smoothing does not preserve image structures very well and thus non-linear techniques are mostly applied for image enhancement. A different perspective is given in the framework of channel-smoothing, where the feature domain is not considered as a linear space, but it is decomposed into local basis functions. One major drawback is the larger memory requirement for this type of representation, which is avoided if the channel representation is subsampled in the spatial domain. This general type of feature representation is called channel-coded feature map (CCFM) in the literature and a special case using linear channels is the SIFT descriptor. For computing CCFMs the spatial resolution and the feature resolution need to be selected.

In this paper, we focus on the spatio-featural scale-space from a scale-selection perspective. We propose a coupled scheme for selecting the spatial and the featural scales. The scheme is based on an analysis of lower bounds for the product of uncertainties, which is summarized in a theorem about a spatio-featural uncertainty relation. As a practical application of the derived theory, we reconstruct images from CCFMs with resolutions according to our theory. The results are very similar to the results of non-linear evolution schemes, but our algorithm has the fundamental advantage of being non-iterative. Any level of smoothing can be achieved with about the same computational effort.

Place, publisher, year, edition, pages
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-58511OAI: diva2:342992
Swedish Symposium on Image Analysis - SSBA'2009, 18-20 March, Halmstad, Sweden
Available from: 2010-08-11 Created: 2010-08-11 Last updated: 2016-05-04Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Felsberg, Michael
By organisation
Computer VisionThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 223 hits
ReferencesLink to record
Permanent link

Direct link