liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of Au/ZnO nanorods Schottky light-emitting diodes grown by low-temperature aqueous chemical method
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-6235-7038
Show others and affiliations
2010 (English)In: Applied Physics A: Materials Science & Processing, ISSN 0947-8396, E-ISSN 1432-0630, Vol. 100, no 2, 467-472 p.Article in journal (Refereed) Published
Abstract [en]

High quality vertically aligned ZnO nanorods (NRs) were grown by low-temperature aqueous chemical technique on 4H-n-SiC substrates. Schottky light-emitting diodes (LEDs) were fabricated. The current-voltage (I-V) characteristics of Schottky diodes reveal good rectifying behavior. Optical properties of the ZnO nanorods (NRs) were probed by cathodoluminescence (CL) measurements at room temperature complemented with electroluminescence (EL). The room-temperature CL spectra of the ZnO NRs exhibit near band edge (NBE) emission as well as strong deep level emission (DLE) centered at 690 nm. At room temperature the CL spectra intensity of the DLE was enhanced with the increase of the electron beam penetration depth due to the increase of defect concentration at the interface and due to the conversion of self-absorbed UV emission. We observed a variation in the DLE along the nanorod depth. This indicates a relatively lower structural quality near the interface between ZnO NRs and n-SiC substrate. The room-temperature CL spectra of SiC show very weak emission, which confirms that most of the DLE is originating from the ZnO NRs, and SiC has a minute contribution to the emission.

Place, publisher, year, edition, pages
Springer Science Business Media , 2010. Vol. 100, no 2, 467-472 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-58660DOI: 10.1007/s00339-010-5722-0ISI: 000280556600024OAI: oai:DiVA.org:liu-58660DiVA: diva2:344873
Available from: 2010-08-22 Created: 2010-08-20 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Fabrication and Characterization of ZnO Nanorods Based Intrinsic White Light Emitting Diodes (LEDs)
Open this publication in new window or tab >>Fabrication and Characterization of ZnO Nanorods Based Intrinsic White Light Emitting Diodes (LEDs)
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

ZnO material based hetero-junctions are a potential candidate for the design andrealization of intrinsic white light emitting devices (WLEDs) due to several advantages overthe nitride based material system. During the last few years the lack of a reliable andreproducible p-type doping in ZnO material with sufficiently high conductivity and carrierconcentration has initiated an alternative approach to grow n-ZnO nanorods (NRs) on other ptypeinorganic and organic substrates. This thesis deals with ZnO NRs-hetero-junctions basedintrinsic WLEDs grown on p-SiC, n-SiC and p-type polymers. The NRs were grown by thelow temperature aqueous chemical growth (ACG) and the high temperature vapor liquid solid(VLS) method. The structural, electrical and optical properties of these WLEDs wereinvestigated and analyzed by means of scanning electron microscope (SEM), current voltage(I-V), photoluminescence (PL), cathodoluminescence (CL), electroluminescence (EL) anddeep level transient spectroscopy (DLTS). Room temperature (RT) PL spectra of ZnOtypically exhibit one sharp UV peak and possibly one or two broad deep level emissions(DLE) due to deep level defects in the bandgap. For obtaining detailed information about thephysical origin, growth dependence of optically active defects and their spatial distribution,especially to study the re-absorption of the UV in hetero-junction WLEDs structure depthresolved CL spectroscopy, is performed. At room temperature the CL intensity of the DLEband is increased with the increase of the electron beam penetration depth due to the increaseof the defect concentration at the ZnO NRs/substrate interface. The intensity ratio of the DLEto the UV emission, which is very useful in exploring the origin of the deep level emissionand the distribution of the recombination centers, is monitored. It was found that the deepcenters are distributed exponentially along the ZnO NRs and that there are more deep defectsat the root of ZnO NRs compared to the upper part. The RT-EL spectra of WLEDs illustrateemission band covering the whole visible range from 420 nm and up to 800 nm. The whitelightcomponents are distinguished using a Gaussian function and the components were foundto be violet, blue, green, orange and red emission lines. The origin of these emission lines wasfurther identified. Color coordinates measurement of the WLEDs reveals that the emitted lighthas a white impression. The color rendering index (CRI) and the correlated color temperature(CCT) of the fabricated WLEDs were calculated to be 80-92 and 3300-4200 K, respectively.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2011. 68 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1401
Keyword
Zinc Oxide nanorods, White light emitting diode, Photoluminescence, Cathodoluminescence, Electroluminescence, Deep level transient spectroscopy (DLTS)
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-71829 (URN)978-91-7393-054-3 (ISBN)
Public defence
2011-11-11, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2011-11-07 Created: 2011-11-07 Last updated: 2014-01-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Bano, NargisNour, OmerWillander, Magnus

Search in DiVA

By author/editor
Bano, NargisNour, OmerWillander, Magnus
By organisation
Department of Science and TechnologyThe Institute of Technology
In the same journal
Applied Physics A: Materials Science & Processing
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 203 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf