liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Two Amyloid States of the Prion Protein Display Significantly Different Folding Patterns
Universityof Maryland.
University of California Los Angeles.
University of Maryland.
University of Maryland.
Show others and affiliations
2010 (English)In: JOURNAL OF MOLECULAR BIOLOGY, ISSN 0022-2836, Vol. 400, no 4, 908-921 p.Article in journal (Refereed) Published
Abstract [en]

It has been well established that a single amino acid sequence can give rise to several conformationally distinct amyloid states. The extent to which amyloid structures formed within the same sequence are different, however, remains unclear. To address this question, we studied two amyloid states (referred to as R- and S-fibrils) produced in vitro from highly purified full-length recombinant prion protein. Several biophysical techniques including X-ray diffraction, CD, Fourier transform infrared spectroscopy (FTIR), hydrogen-deuterium exchange, proteinase K digestion, and binding of a conformation-sensitive fluorescence dye revealed that R- and S-fibrils have substantially different secondary, tertiary, and quaternary structures. While both states displayed a 4. 8-angstrom meridional X-ray diffraction typical for amyloid cross-beta-spines, they showed markedly different equatorial profiles, suggesting different folding pattern of beta-strands. The experiments on hydrogen-deuterium exchange monitored by FTIR revealed that only small fractions of amide protons were protected in R- or S-fibrils, an argument for the dynamic nature of their cross-beta-structure. Despite this fact, both amyloid states were found to be very stable conformationally as judged from temperature-induced denaturation monitored by FTIR and the conformation-sensitive dye. Upon heating to 80 degrees C, only local unfolding was revealed, while individual state-specific cross-beta features were preserved. The current studies demonstrated that the two amyloid states formed by the same amino acid sequence exhibited significantly different folding patterns that presumably reflect two different architectures of cross-beta-structure. Both Sand R-fibrils, however, shared high conformational stability, arguing that the energy landscape for protein folding and aggregation can contain several deep free-energy minima.

Place, publisher, year, edition, pages
Elsevier Science B.V., Amsterdam , 2010. Vol. 400, no 4, 908-921 p.
Keyword [en]
amyloid fibrils, prion protein, X-ray diffraction, FTIR, hydrogen-deuterium exchange
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-58646DOI: 10.1016/j.jmb.2010.05.051ISI: 000280652300021OAI: diva2:344888
Available from: 2010-08-22 Created: 2010-08-20 Last updated: 2014-04-08

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nilsson, Peter
By organisation
Organic ChemistryThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link