liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electron wave-packet transport through nanoscale semiconductor device in time domain
Chalmers University of Technology.
Chalmers University of Technology.ORCID iD: 0000-0001-6235-7038
2005 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 97, no 9Article in journal (Refereed) Published
Abstract [en]

Future low-power downscaled metal-oxide-semiconductor (MOS) devices are in a size regime that requires a quantum-mechanical approach. Two theoretical approaches, the steady-state single plane-wave transport model and the time-dependent wave-packet transport model, have been discussed to study the electron transport through model nanoscale potential profiles. It has been shown that the single plane-wave transport model at steady state neglects the coupling among different plane waves induced by the potential profile variation induced by the external bias. Thus, the model is only valid when the external bias is rather small. The electron wave-packet transport theory models the electrons by wave packets consisting of all available plane waves in the contact from where the electrons originate. The couplings among different plane waves are included in the temporal evolution of the time-dependent Schrodinger equation. This model is thus more proper when studying nanoscale devices at normal device working configurations. The effects of gate bias and the device geometry on the wave-packet transport are then studied by model potentials of future downscaled devices, which explains the experimentally reported conventional I-V characteristics of nanoscale MOS field-effect transistors (MOSFETs) at room temperature, while the normal MOSFET functioning is expected to be impossible by the single plane-wave transport model due to the independent tunneling effects of individual plane waves.

Place, publisher, year, edition, pages
American Institute of Physics , 2005. Vol. 97, no 9
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-59218DOI: 10.1063/1.1890452ISI: 000229155600085OAI: oai:DiVA.org:liu-59218DiVA: diva2:350101
Available from: 2010-09-10 Created: 2010-09-09 Last updated: 2017-12-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Willander, Magnus

Search in DiVA

By author/editor
Willander, Magnus
In the same journal
Journal of Applied Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 67 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf