liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Modelling living fluids with the subdivision into the components in terms of probability distributionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2004 (English)In: Mathematical Models and Methods in Applied Sciences, ISSN 0218-2025, Vol. 14, no 10, 1495-1520 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

World Scientific , 2004. Vol. 14, no 10, 1495-1520 p.
##### Keyword [en]

multicomponent fluid of living cells and related macromolecules; generalized kinetic theory; stochastic differential equation; probability distribution of parameters of the fluid particles; mode of probability distribution and multimodal distributions
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:liu:diva-59208DOI: 10.1142/S0218202504003702ISI: 000224825200004OAI: oai:DiVA.org:liu-59208DiVA: diva2:350116
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2010-09-10 Created: 2010-09-09 Last updated: 2014-01-15

As it follows from the results of C. H. Waddigton, F. E. Yates, A. S. Iberall, and other well-known bio-physicists, living fluids cannot be modelled within the frames of the fundamental assumptions of the statistical-mechanics formalism. One has to go beyond them. The present work does it by means of the generalized kinetics (GK), the theory enabling one to allow for the complex stochasticity of internal properties and parameters of the fluid particles. This is one of the key features which distinguish living fluids from the nonliving ones. It creates the disparity of the particles and hence breaks the each-fluid-component-uniformity requirement underlying statistical mechanics. The work deals with the corresponding modification of common kinetic equations which is in line with the GK theory and is the complement to the latter. This complement allows a subdivision of a fluid into the fluid components in terms of nondiscrete probability distributions. The treatment leads to one more equation that describes the above internal parameters. The resulting model is the system of these two equations. It appears to be always nonlinear in case of living fluids. In case of nonliving fluids, the model can be linear. Moreover, the living-fluid model, as a whole, cannot have the thermodynamic equilibrium, only partial equilibriums (such as the motional one) are possible. In contrast to this, in case of nonliving fluids, the thermodynamic equilibrium is, of course, possible. The number of the fluid components is treated as the number of the modes of the particle-characteristic probability density. In so doing, a fairly general extension of the notion of the mode from the one-dimensional case to the multidimensional case is proposed. The work also discusses the variety of the time-scales in a living fluid, the simplest quantum-mechanical equation relevant to living fluids, and the non-equilibrium nonlinear stochastic hydrodynamics option. The latter is simpler than, but conceptually comparable to, stochastic kinetic equations. A few directions for future research are suggested. The work notes a cohesion of mathematical physics and fluid mechanics with the living-fluid-related fields as a complex interdisciplinary problem.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});