liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polarization of an exciton in a ZnO layer using a split gate potential
University of Göteborg and Chalmers University of Technology.
University of Göteborg and Chalmers University of Technology.
University of Göteborg and Chalmers University of Technology.ORCID iD: 0000-0001-6235-7038
2003 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 68, no 15Article in journal (Refereed) Published
Abstract [en]

In this paper we focus on structural and optical transitions of an exciton in a Zinc Oxide (ZnO) layer, which could be widely controlled by a split gate potential. We have solved the exciton problem by a self-consistent Schrodinger-Poisson technique, where the Hamiltonian includes the boundary conditions for the split gate structure. The gate voltage creates a paraboliclike potential, which at a typical threshold voltage separates or polarizes the exciton strongly. This sharp structural transition brings the exciton from being strongly correlated with a large overlap to a regime where the correlation is very small (with small overlap). The resulting structure for the exciton at negative gate voltages is a structure where the hole is located like a ring around a dotlike electron. For positive values of the gate voltage the situation is opposite. We have especially studied the ground-state binding energy and the optical transitions of the exciton. We found that the ground-state energy for ZnO could be tuned and the decrease of the ground-state energy can be as large as the double of the bulk exciton energy (60 meV for ZnO) with a gate voltage of -5 V. The ground-state energy is almost constant for small values of the gate voltage but at a typical threshold voltage (approximately -2 V) the energy suddenly changes and becomes linear with the gate voltage. We also analyze the lifetime for the exciton, which is shown to increase from nanoseconds to beyond milliseconds. This was shown to be an effect of the small overlap between the hole and the electron when the gate voltage increased above the threshold voltage. Stimulated by the long lifetime of the ground state of the exciton we also calculated the optical transition frequency and the corresponding oscillator strength for the transition between the ground state and the dominating excited (self-consistent) exciton states. The transition frequency was found to occur in the THz region and the oscillator strength in the range of 0.3-0.4 for gate voltages between -2 V and -5 V. In addition, we have also analytically described polarization and especially total charge densities for excitons in small linear electric fields.

Place, publisher, year, edition, pages
American Physical Society , 2003. Vol. 68, no 15
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-59195DOI: 10.1103/PhysRevB.68.155334ISI: 000186422600094OAI: oai:DiVA.org:liu-59195DiVA: diva2:350135
Available from: 2010-09-10 Created: 2010-09-09 Last updated: 2014-01-15

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Zhao, QXWillander, Magnus

Search in DiVA

By author/editor
Zhao, QXWillander, Magnus
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf