liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tuning the room temperature nonlinear I-V characteristics of a single-electron silicon quantum dot transistor by split gates: A simple model
University of Göteborg and Chalmers University of Technology.
University of Göteborg and Chalmers University of Technology.
University of Göteborg and Chalmers University of Technology.ORCID iD: 0000-0001-6235-7038
2002 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 65, no 12Article in journal (Refereed) Published
Abstract [en]

We propose an experiment that potentially allows a single-electron silicon quantum dot transistor to operate at room temperature. The emitter and collector of the device consist of silicon quantum wires and the base contains a single silicon dot buried in silicon dioxide. We suggest that split gates are added to the usual experimental situation, to provide additional and variable confinement perpendicular to the transport direction in the emitter and collector regions. The current-voltage curve is calculated using the Bardeen transfer Hamiltonian method. The potential defined by the gates is approximated to a harmonic form. We predict the nonlinear structure in the current-voltage curve, will survive to room temperature for systems with an emitter and collector with dimensions of the order 20-40 nm, and where the harmonic potentials have subband level spacing of the order 4-8.5 meV. Furthermore, we predict that the peak positions and peak to valley ratios in the current-voltage curve can be "tuned" by changing the split gate voltage.

Place, publisher, year, edition, pages
American Physical Society , 2002. Vol. 65, no 12
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-59171DOI: 10.1103/PhysRevB.65.125309ISI: 000174938800057OAI: oai:DiVA.org:liu-59171DiVA: diva2:350169
Available from: 2010-09-10 Created: 2010-09-09 Last updated: 2017-12-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Willander, Magnus

Search in DiVA

By author/editor
Willander, Magnus
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf