liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Phase transitions of a few-electron system in a spherical quantum dot
University of Gothenburg and Chalmers University of Technology.
Institute of Spectroscopy, Moscow .
Institute of Spectroscopy, Moscow .
University of Gothenburg and Chalmers University of Technology.ORCID iD: 0000-0001-6235-7038
2002 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 66, no 7Article in journal (Refereed) Published
Abstract [en]

The spin configurations of a spherical quantum dot, defined by a three-dimensional (3D) harmonic confinement potential, containing a few Coulomb Fermi particles (electrons or holes) are studied. Quantum transitions involving a spin transformation and a "cold melting" (from a Wigner crystal-like state, i.e., from regime of strongly correlated electrons, to a Fermi-liquid-like phase) is driven by the dimensionless quantum control parameter q (which is connected with steepness of the confinement potential) is demonstrated. The pair correlation and radial distribution functions which characterize electronic quantum delocalization are analyzed. The calculations using the unrestricted variational Hartree-Fock method (for the ground state at T=0 K) and the more computer intensive quantum path integral Monte Carlo method (for Tnot equal0 K) are performed and compared. For small q, the ground state of the three electron system is crystal-like and has C-3 symmetry, i.e., the maxima of electron density are located at the nodes of an equilateral triangle. The preferable spin configuration for small q is "ferromagnetic," with total spin S=3/2. As q rises, the widths of the one-electron wave functions grow and become overlapping. At a critical value q(1) the ground state changes from S=3/2 to S=1/2 and at the same time, asymmetry appears in the triangle (i.e., spontaneous breaking of the C-3 symmetry to C-2 symmetry). At a second critical value q(2) the electron distribution undergoes a symmetry phase transition, from trianglelike (with C-2 symmetry) to axial symmetric (with C-infinity symmetry). As q grows further, we obtain a Fermi-liquid-like (non-interacting) electron configuration in the ground state (S=1/2). In addition, the S=3/2 state, at a critical q value (which is slightly larger than q(1)) undergoes a dramatic charge redistribution.

Place, publisher, year, edition, pages
American Physical Society , 2002. Vol. 66, no 7
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-59170DOI: 10.1103/PhysRevB.66.075335ISI: 000177969800127OAI: diva2:350170
Available from: 2010-09-10 Created: 2010-09-09 Last updated: 2014-01-15

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Willander, Magnus
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 41 hits
ReferencesLink to record
Permanent link

Direct link