liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Advances in SiC growth using chloride-based CVD
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Silicon Carbide (SiC) is a wide band-gap semiconductor. Similar to silicon it can be used to make electronic devices which can be employed in several applications. SiC has some unique features, such as wide band-gap, high hardness, chemical inertness, and capability to withstand high temperatures. Its high breakdown electric field, high saturated drift velocity and high thermal conductivity are some of the most important characteristics to understand why SiC has superior electrical properties compared to silicon, and make it very attractive for power devices especially at high voltages and high frequency. The gain in reduced device sizes, reduced cooling requirements, and especially in improved energy efficiency for AC/DC conversion are a very important reasons to keep working in improving the material quality. Yet several issues still limit its full employment in all its potential applications, and many more steps have thus to be done for its complete success.

The core of an electric device is the epitaxial layer grown on a substrate by chemical vapor deposition (CVD). Gases containing silicon and carbon atoms, such as silane and ethylene, are often used to grow SiC, but limits in high growth rate are given by silicon cluster formation in the gas phase which is detrimental for the epitaxial layer quality. High growth rates are needed to deposit thick layers ( > 100 μm) which are required for high power devices. Chloride-based CVD, which is usually employed in the silicon epitaxial growth industry, is based on the presence of chlorinated species in the gas mixture which prevent the formation of silicon clusters, therefore resulting in very high growth rates. This chloride-based CVD process was first started to be investigated a few years ago and then only at typical growth conditions, without exploring all its full potential, such as its performance at low or high temperature growth. In addition important parameters affecting the epitaxial layer quality in terms of defect formation and electrical characteristics are the substrate orientation and its off-cut angle. Standard processes are run on substrates having an 8° off-cut angle towards a specific crystallographic direction. On lower off-cut angles, such as 4° or almost 0° (also called on-axis) which would be more economical and could resolve problems related to bipolar degradation, many typical issues should be solved or at least minimized. For 4° off-cut angle the main problem is the step-bunching resulting in high roughness of the epi surface whereas for nominally on-axis the formation of 3C inclusions is the main problem.

In this thesis we discuss and present results on the use of the chloride-based CVD process in a hot-wall reactor to further explore most of the above mentioned topics. Onaxis substrates are used to grow homopolytypic epitaxial layers; detailed experiments on the gas phase composition adopting high contents of chlorine made it possible (Paper 1). Optimization of the on-axis surface preparation prior to the growth in combination with a correct choice of chlorinated precursors and growth conditions were required to reach a growth rate of 100 μm/h of 100% 4H polytype (Paper 2). Substrates with a 4° off-cut angle could be grown free from step-bunching, one of the most common morphological issue and usually detrimental for devices. Both the standard and chlorinated-process were successfully used, but at different growth rates (Paper 3). Also for this off-cut substrate a specific surface preparation and selected growth parameters made the growth possible at rates exceeding 100 μm/h (Paper 4). The benefit of the chlorinated chemistry was tested under unusual growth conditions, such as under a concentrated gas mixture (i.e. at very low carrier gas flow) tested on different off-cut substrates (Paper 5). A great advantage of chloride-based chemistry is the feasibility of growing at very low temperatures (1300 to 1400 °C compared to the 1600 °C standard temperature). At such low temperatures 4H-SiC epitaxial layers could be grown on 8° off-axis substrates (Paper 6), while high quality heteroepitaxial 3C-SiC layers were grown on on-axis 6H-SiC substrates (Paper 7). Finally, the very high growth rates achieved by the chloride-based CVD were applied in a vertical hot-wall reactor configuration, demonstrating the ability to grow very thick SiC layers at higher rates and lower temperatures than what is typically used for bulk growth (Paper 8). This work demonstrated that a new bulk growth process could be developed based on this approach.

Abstract [sv]

Kiselkarbid (SiC) är en halvledare med ett stort bandgap och precis som den mycket vanliga halvledaren kisel kan SiC användas till elektroniska komponenter för många olika tillämpningar. SiC har unika materialegenskaper så som dess stora bandgap, dess höga hårdhet och motståndskraft både mot kemiskt aggressiva miljöer och höga temperaturer. Det som framförallt gör SiC så mycket bättre än kisel är främst den höga genombrottsfältstyrkan som gör att SiC klarar höga spänningar vilket är särskilt intressant för kraftkomponenter, för användning vid höga spänningar och höga frekvenser. Med elektroniska komponenter av SiC kan man, jämfört med samma komponenter av kisel, minska komponenternas storlek och kylbehov, men den huvudsakliga vinsten är en högre energieffektivitet vid AC/DC-omvandling. De minskade energiförlusterna är ett mycket starkt argument för att fortsätta att förbättra materialkvalitén på SiC. Det är materialrelaterade problem som idag håller tillbaka SiC-teknologin och ett antal problem måste lösas för att SiC ska få sitt stora genombrott.

Kärnan i en elektronisk komponent är det epitaxiella skikt som har växts ovanpå ett substrat. Ordet epitaxi kommer från grekiskans epi, som betyder ovanpå, och taxis, som betyder i ordning, så ett epitaxiellt skikt har alltså odlats på ett substrat och kopierat substratets kristallstruktur. Den vanligaste tekniken för att odla epitaxiella skikt i halvledarindustrin kallas på engelska chemical vapor deposition. Någon bra svensk översättning finns inte men tekniken innebär att man deponerar ett tunt skikt via kemiska reaktioner mellan gaser. Tekniken förkortas generallt för CVD från dess engelska namn. För att odla ett epitaxiellt skikt av SiC använder man gaser med kisel och kol, så som silan (SiH4) och eten (C2H4), som späds ut kraftigt i vätgas. För att öka tillväxthastigheten i processen måste man öka mängden silan och eten i gasblandningen. Ett problem är dock att vid höga koncentrationer av kisel bildas kiseldroppar som regnar ner på substratytan och förstör det epitaxiella skiktet. Detta faktum gör att man inte kan odla epitaxiella skikt av SiC snabbare än ca 5-10 μm i timmen. För många kraftkomponenter krävs epitaxiella skikt med en tjocklek på 100 μm, eller mer och för att kunna odla sådana skikt på rimlig tid används kloridbaserad CVD. Kloridbaserad CVD är idag standard i kiselindustrin och bygger på närvaron av klorföreningar i gasblandningen. Eftersom klor binder starkare till kisel än vad kisel gör, hindrar närvaron av klor bildningen av kiseldroppar och man kan öka koncentrationen av kisel i gasblandningen och därmed öka tillväxthastigheten betydligt. Kloridbaserad CVD för kiselkarbid började på allvar undersökas för snart tio år sedan och då var fokus främst på redan välkända tillväxtförhållanden, men den fulla potentialen hos kloridbaserad CVD, så som dess effekt på låg-  eller högtemperatur tillväxt har ännu inte studerats. Inte heller har grundliga undersökningar gjorts av vad det är i processen som har betydelse för det epitaxiella skiktets elektriska egenskaper eller för bildandet av olika defekter under tillväxten.

När man kapar upp en kiselkarbidkristall i tunna skivor för att kunna odla epitaxiella skikt på dem, kapar man ofta kristallen lite snett i förhållande till hur atomplanen ligger i den. Detta gör att man får en kristallyta som ser ut lite som en trappa på atomär nivå. Detta är bra eftersom atomer som ska bygga upp det epitaxiella skiktet gärna binder till ytan vid ett sådant trappsteg eftersom de där kan binda till flera atomer samtidigt. Substrat som har kapats snett på det viset kallas off-axis substrat och för 4H-polytypen av SiC kapar man vanligen substraten 8 eller 4° snett. Substrat som kapats helt parallellt med kristallplanen kallas on-axis substrat, dessa är generellt sett svåra att odla bra epitaxiella skikt på, men man får inga spillbitar när man kapar kristallen och vissa kristalldefekter i substratet tränger inte igenom till episkiktet vilket ger bättre livslängd för de elektroniska komponenterna.

För att kunna odla på on-axis substrat gjordes detaljerade undersökningar av olika gasblandningar för processen och en hög klorhalt i gasblandningen möjliggjorde en process med hög tillväxthastighet på on-axis substrat (Artikel 1). Ytterligare optimering av både gaskemin och etsning av substratytan innan tillväxt gjorde att tillväxthastigheter på 100 μm i timmen kunde användas (Artikel 2). För substrat med 4° off-axis-vinkel utvecklades en process för odling av epitaxiella skikt där vanliga kristalldefekter, som är förödande för en elektrisk komponent, eliminerades och tack vare den kloridbaserade kemin kunde skikten odlas med relativt hög hastighet (Artikel 3). Även denna process utvecklades så att tillväxthastigheten överskred 100 μm i timmen (Artikel 4). Den kloridbaserade processen testades även under mera ovanliga tillväxtförhållanden, så som under väldigt lågt vätgasflöde, alltså väldigt hög koncentration av både kisel och kol i gasblandningen (Artikel 5). Den kloridbaserade kemin möjliggjorde även tillväxt vid låga temperaturer, 1300-1400 °C i stället för 1600 °C vilket är av stort intresse för vissa applikationer. Epitaxiella skikt hög kvalité av både hexagonal 4H-SiC (Artikel 6) och kubisk 3CSiC (Artikel 7) odlades vid låga temperaturer på substrat av hexagonal SiC. Slutligen användes även den kloridbaserade kemin för att odla tjocka epitaxiella skikt vid högre temperaturer, 1700-1800 °C, med en mycket hög tillväxthastighet (Artikel 8). Detta är ett första steg mot en kloridbaserad process för att odla SiC bulkkristaller som sedan kan kapas till SiC substrat. Tack vare den kloridbaserade kemin kan betydligt lägre temperaturer än standard bulkprocesser användas som har en process temperatur på ca 2100-2400 °C.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press , 2010. , 66 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1340
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-60226ISBN: 978-91-7393-303-2 (print)OAI: oai:DiVA.org:liu-60226DiVA: diva2:355761
Public defence
2010-11-10, Plank, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 09:15
Opponent
Supervisors
Available from: 2010-10-08 Created: 2010-10-08 Last updated: 2014-10-08Bibliographically approved
List of papers
1. Thick homoepitaxial layers grown on on-axis Si-face 6H- and 4H-SiC substrates with HCl addition
Open this publication in new window or tab >>Thick homoepitaxial layers grown on on-axis Si-face 6H- and 4H-SiC substrates with HCl addition
Show others...
2009 (English)In: Journal of Crystal Growth, ISSN 0022-0248, Vol. 312, no 1, 24-32 p.Article in journal (Refereed) Published
Abstract [en]

The homoepitaxial growth of 6H- and 4H-SiC on on-axis substrates has been studied in order to demonstrate the growth of thick, mirror-like epitaxial layers without other polytype inclusions and basal plane dislocations. The study was done in a hot wall reactor using standard precursors silane and ethylene with hydrogen chloride (HCl) addition. The main important process parameters were studied, in particular deposition temperature, and precursor ratios such as C/Si, Cl/Si and Si/H2. The addition of chlorine in the precursor mixture was found to be the key parameter to grow layers at high rate with morphology and thickness similar to epilayers deposited on commonly used off-axis substrates. Two different process conditions were found allowing growth of low-doped (in the low 1014 cm−3 range) 100-μm-thick epitaxial layers at a growth rate of 25 μm/h, 8 times higher than what is achieved without HCl addition. A high concentration of SiCl2 in the gas phase obtained by high Cl/Si and Si/C ratios was fundamental to achieve these results.

Place, publisher, year, edition, pages
Elsevier, 2009
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-52857 (URN)10.1016/j.jcrysgro.2009.10.011 (DOI)
Available from: 2010-01-12 Created: 2010-01-12 Last updated: 2015-03-11
2. High growth rate of 4H-SiC epilayers grown on on-axis substrates with different chlorinated precursors
Open this publication in new window or tab >>High growth rate of 4H-SiC epilayers grown on on-axis substrates with different chlorinated precursors
Show others...
2010 (English)In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 10, no 12, 5334-5340 p.Article in journal (Refereed) Published
Abstract [en]

The epitaxial growth of 4H-SiC on on-axis substrates is a very important process to develop in order to accelerate the development and improve the performance of bipolar SiC based power devices, but until now, only relatively low growth rate processes have been demonstrated. The aim of this study is to demonstrate a high growth rate deposition process of high quality 4H-SiC epilayers on on-axis substrates, free of 3C-SiC inclusions. Previous studies showed that silicon-rich gas-phase conditions (prior to, and during the deposition process) and/or high Cl/Si ratios were vital in order to avoid 3C-SiC inclusions in the epitaxial layers when growing on on-axis substrates. This study combines the knowledge of surface pre-treatment with the chloride-based chemistry developed for off-axis growth. Two different precursor approaches were used, one adopting the standard precursors (silane and ethylene) with addition of hydrogen chloride (HCl), and the other based on the molecule methyltrichlorosilane (CH3SiCl3 or MTS). In this study we will show that using a MTS-based CVD process in combination with proper in situ silane etching and accurate optimisation of the other process parameters (temperature, C/Si and Cl/Si ratio) results in homoepitaxial growth of high purity and high quality 4H-SiC layers on on-axis Si-face substrates at a growth rate of 100 μm/h. Additionally, a higher efficiency of the MTS precursor chemistry was found and discussed.

Place, publisher, year, edition, pages
American Chemical Society, 2010
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-60216 (URN)10.1021/cg101288u (DOI)000284675100045 ()
Available from: 2010-10-08 Created: 2010-10-08 Last updated: 2015-03-11
3. Improved morphology for epitaxial growth on 4° off-axis 4H-SiC substrates
Open this publication in new window or tab >>Improved morphology for epitaxial growth on 4° off-axis 4H-SiC substrates
Show others...
2009 (English)In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 311, no 12, 3265-3272 p.Article in journal (Refereed) Published
Abstract [en]

A process optimization of the growth of SiC epilayers on 4° off-axis 4H-SiC substrates is reported. Process parameters such as growth temperature, C/Si-ratio and temperature ramp up conditions are optimized for the standard non-chlorinated growth in order to grow smooth epilayers without step-bunching and triangular defects. The growth of 6 μm thick n-type doped epitaxial layers on 75 mm diameter wafers is demonstrated as well as that of 20 μm thick layer. The optimized process was then transferred to a chloride-based process and a growth rate 28 μm/h was achieved without morphology degradation. A low growth temperature and a low C/Si ratio are the key parameters to reduce both the step-bunching and the formation of triangular defects.

National Category
Chemical Sciences
Identifiers
urn:nbn:se:liu:diva-15251 (URN)10.1016/j.jcrysgro.2009.03.037 (DOI)
Available from: 2008-10-29 Created: 2008-10-27 Last updated: 2015-03-11Bibliographically approved
4. Growth of smooth 4H-SiC epilayers on 4° off-axis substrates with chloride-based CVD at very high growth rate
Open this publication in new window or tab >>Growth of smooth 4H-SiC epilayers on 4° off-axis substrates with chloride-based CVD at very high growth rate
Show others...
2011 (English)In: Materials research bulletin, ISSN 0025-5408, E-ISSN 1873-4227, Vol. 46, no 8, 1272-1275 p.Article in journal (Refereed) Published
Abstract [en]

4H-SiC epilayers grown on 4º off-axis substrates at high rates usually suffer from step-bunching (very high surface roughness) or of extended triangular defects, both detrimental for device performance.

In this study we developed a novel in situ pre-growth surface preparation based on hydrogen chloride (HCl) addition at a temperature higher than that used for the growth. This pre-growth etching procedure minimizes the density of triangular defects which usually occur at low temperatures and simultaneously enables growth at a temperature low enough to avoid stepbunching. Thanks to this surface preparation step, chloride-based CVD could be used for rapid epitaxial growth of high quality layers. In this study, layers were grown at rates of 100 μm/h yielding defect free epitaxial layers with very smooth surface (RMS value of 8.9 Å on 100x100 μm2 area).

Place, publisher, year, edition, pages
Elsevier, 2011
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-60217 (URN)10.1016/j.materresbull.2011.03.029 (DOI)
Note
The original title of this article was "Growth of step-bunch free 4H-SiC epilayers on 4º off-axis substrates using chloride-based CVD at very high growth rate". The status of this article has changed from "Manuscript" to "Article in journal".Available from: 2010-10-08 Created: 2010-10-08 Last updated: 2015-03-11Bibliographically approved
5. Optimization of a Concentrated Chloride-Based CVD Process for 4H–SiC Epilayers
Open this publication in new window or tab >>Optimization of a Concentrated Chloride-Based CVD Process for 4H–SiC Epilayers
Show others...
2010 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, Vol. 157, no 10, H969-H979 p.Article in journal (Refereed) Published
Abstract [en]

Concentrated homoepitaxial growths of 4H–SiC was performed using a chloride-based chemical vapor deposition (CVD) process on different off-angle substrates (on-axis, 4 and 8° off-axis toward the [110] direction). A suitable combination of gas flow and process pressure is needed to produce the gas speed that yields an optimum cracking of the precursors and a uniform gas distribution for deposition over large areas. The use of low pressure and the addition of chlorinated precursors bring the added benefit of achieving higher growth rates. A systematic study of the gas speed's effect on the growth rate, uniformity, and morphology on the 4H–SiC epitaxial layers was performed. Growth rates in excess of 50  µm/h were achieved on 50 mm diameter wafers with excellent thickness uniformity (below 2% /mean without rotation of the substrate) and smooth morphology using only 1/10 of the typical gas carrier flow and process pressure demonstrating the feasibility of a concentrated chloride-based CVD process for 4H–SiC. Thermodynamic calculations showed that the improved thickness uniformity could be due to a more uniform gas phase composition of the silicon intermediates. The concentration of the SiCl2 intermediate increases by a factor of 8 at a reduced carrier flow, while all the other hydrogenated silicon intermediates decrease.

National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-60218 (URN)10.1149/1.3473813 (DOI)
Available from: 2010-10-08 Created: 2010-10-08 Last updated: 2014-10-08
6. Chlorinated precursor study in low temperature CVD of 4H-SiC
Open this publication in new window or tab >>Chlorinated precursor study in low temperature CVD of 4H-SiC
Show others...
2011 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, no 10, 3074-3080 p.Article in journal (Refereed) Published
Abstract [en]

Low temperature chemical vapour deposition of SiC has gained interest in the last years for being less demanding in terms of reaction chamber lifetime, but also for allowing higher p-type dopant incorporation. Chloride-based CVD at low temperatures has been studied using chloromethane with tetrachlorosilane or silane, respectively and with or without controlled HCl addition. In this study we explore the use of methyltrichlorosilane (MTS) at growth temperatures significantly lower than what is commonly used for homoepitaxial growth of SiC. MTS is a molecule containing all the needed precursor atoms; its effects are compared to the standard CVD chemistry, consisting of silane, ethylene, and HCl.

Very different chemistries between the two precursor systems are proposed; in the case of MTS, C/Si ratios higher than 1 were required, however using the standard chemistry ratios lower than 1 were needed to obtain a defect-free epitaxial layer. We also demonstrate the need of using Cl/Si ratios as high as 15 to achieve a growth rate of 13 μm/h for 8° off-axis 4H-SiC epitaxial layers at 1300 °C. Limitations due to the low growth temperature are discussed in light of the experimental evidence on the growth mechanism as determined by the morphology degradation and the limited growth rate. Finally a comparison between the epilayers morphology obtained on 4H-SiC substrates with different off-cuts are presented, confirming the importance of lower C/Si ratios for 4° off-axis material and the inevitable growth of the cubic SiC polytype on on-axis substrates.

Place, publisher, year, edition, pages
Elsevier, 2011
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-60219 (URN)10.1016/j.tsf.2010.12.119 (DOI)000289174300013 ()
Available from: 2010-10-08 Created: 2010-10-08 Last updated: 2015-03-11
7. Chloride-based CVD of 3C-SiC epitaxial layers on 6H(0001) SiC
Open this publication in new window or tab >>Chloride-based CVD of 3C-SiC epitaxial layers on 6H(0001) SiC
Show others...
2010 (English)In: Physica Status Solidi (RRL) – Rapid Research Letters, ISSN 1862-6270, Vol. 4, no 11, 305-307 p.Article in journal (Refereed) Published
Abstract [en]

The growth of 3C‐SiC epitaxial layers on nominally on‐axis 6H‐SiC Si‐face substrates using the chloride‐based CVD process is demonstrated. A hot‐wall CVD reactor was used and HCl was added to the standard precursors (silane and ethylene). Several growth parameters were tested: temperature, in‐situ surface preparation, C/Si ratio, Cl/Si ratio, and nitrogen addition. Each parameter had a very important effect on the polytype formation. In the case of 3C‐SiC deposition the morphology and typology of defects could change significantly depending on the different combinations of growth conditions, including the addition of nitrogen. At a growth rate of 10 μm/h, a mirror‐like surface with a single domain decorated by some parallel stripes and few epitaxial defects were obtained. The near‐band gap luminescence of high quality 3C‐SiC layers was characterized by very sharp lines. Microscope and AFM analysis showed a very smooth surface. A background doping in the low 1015 cm−3 range was achieved.

Place, publisher, year, edition, pages
John Wiley and Sons, 2010
Keyword
Semiconductors; chemical vapour deposition; silicon carbide; epitaxy
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-60220 (URN)10.1063/1.3518317 (DOI)000284206700003 ()
Available from: 2010-10-08 Created: 2010-10-08 Last updated: 2014-10-08
8. Chloride-Based SiC Epitaxial Growth toward Low Temperature Bulk Growth
Open this publication in new window or tab >>Chloride-Based SiC Epitaxial Growth toward Low Temperature Bulk Growth
Show others...
2010 (English)In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 10, no 8, 3743-3751 p.Article in journal (Refereed) Published
Abstract [en]

In this study, chloride-based chemical vapor deposition (CVD) of SiC is used either to grow epitaxial layers at high growth rate and to facilitate homopolytypic growth on on-axis substrates or to grow bulk material at temperatures lower than 2000 °C. A vertical reactor configuration with an inlet of gas flow placed at the bottom of the reactor chamber and the exhaust at the top of it has been used. The chlorinated precursors have helped to eliminate or greatly reduce cluster formation, thereby allowing the deposition of thick SiC epilayers at growth rates exceeding 300 μm/h at 1700−1900 °C. Up to 1.5 mm thick homoepitaxial layers have been grown on up to 75 mm diameter 4H- or 6H-SiC wafers. Both on-axis and off-axis, Si-face and C-face polarities have been used. Our results show great promise for the realization of a high growth rate epitaxial process suitable for bulk growth at temperatures lower than those typically used. Such a process is interesting on account of the higher quality material and lower operating cost.

National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-60221 (URN)10.1021/cg1005743 (DOI)
Available from: 2010-10-08 Created: 2010-10-08 Last updated: 2015-09-22

Open Access in DiVA

Advances in SiC growth using chloride-based CVD(1626 kB)1769 downloads
File information
File name FULLTEXT01.pdfFile size 1626 kBChecksum SHA-512
59ca623d9afb0c2617df71b1cd3f5ddc6d367b1fd54e596e81dad94a0f29147ab8721ad3d41e13000cde5b86c636d8de25e11b932c722ee4d855de3ec64b14d2
Type fulltextMimetype application/pdf
Cover(2925 kB)38 downloads
File information
File name COVER01.pdfFile size 2925 kBChecksum SHA-512
32f37008814add507d06792771987b56e4e250138106c49fb85e0652f3bba0f6565bb835e1945eb6b01da67367f716a6000335712358275cbcbf328373550e57
Type coverMimetype application/pdf

Authority records BETA

Leone, Stefano

Search in DiVA

By author/editor
Leone, Stefano
By organisation
Semiconductor MaterialsThe Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1769 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2185 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf