liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energetics and magnetic impact of 3d-metal doping of the half-metallic ferromagnet NiMnSb
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.ORCID iD: 0000-0002-7563-1494
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
2008 (English)In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 77, no 14, 144414- p.Article in journal (Refereed) Published
Abstract [en]

We have performed a theoretical study of the effect of doping the half-Heusler alloy NiMnSb with the magnetic 3d metals Cr, Mn, Fe, Co, and Ni, with respect to both energetics and magnetic properties. Starting from the formation energies, we discuss the possibility of placing the dopant on different crystallographic positions in the alloy. We calculate total and local magnetic moments, effective exchange interactions, and density of states and also outline strategies to tune the magnetic properties of the alloy. Doping of NiMnSb with Cr as well as substituting some Ni with extra Mn have the largest impact on magnetic interactions in the system while preserving its half-metallic property. Therefore, we suggest the possibility that these dopants increase the thermal stability of half-metallicity in NiMnSb, with implications for its possible usage in spintronics applications.

Place, publisher, year, edition, pages
2008. Vol. 77, no 14, 144414- p.
Keyword [en]
NiMnSb, spintronics, half-metallic, doping, defects
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-60433DOI: 10.1103/PhysRevB.77.144414OAI: oai:DiVA.org:liu-60433DiVA: diva2:356606
Available from: 2010-10-13 Created: 2010-10-13 Last updated: 2017-12-12
In thesis
1. Theoretical Descriptions of Complex Magnetism in Transition Metals and Their Alloys
Open this publication in new window or tab >>Theoretical Descriptions of Complex Magnetism in Transition Metals and Their Alloys
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, various methods for studying solids by simulations of quantummechanical equations, have been applied to transition metals and their alloys. Transition metals such as Fe, Ni, and Mn, are not only cornerstones in modern technology, but also key components in the very fabric of the Earth interior. Such systems show highly complex magnetic properties. As shown within this thesis, to understand and predict their properties from a microscopic level, is still a highly demanding task for the the quantum theory of solids. This is especially crucial at elevated temperature and pressure.

It is found that the magnetic degrees of freedom are inseparable from the structural, elastic and chemical properties of such alloy systems. This requires theoretical descriptions capable of handling this interplay. Such schemes are discussed and demonstrated.

Furthermore, the importance of the description of Coulomb correlation effects is demonstrated by DFT calculations and also by going beyond the one-electron description by the LDA+DMFT method.

It is also shown how magnetic interactions in the half-metallic compound NiMnSb can be manipulated by alloying. The stability of these alloys is  also evaluated in calculations, and verified by experimental synthesis at ambient conditions.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 130 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1452
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-78781 (URN)978-91-7519-885-9 (ISBN)
Public defence
2012-06-14, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2012-06-20 Created: 2012-06-20 Last updated: 2015-08-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Alling, BjörnEkholm, MarcusAbrikosov, Igor

Search in DiVA

By author/editor
Alling, BjörnEkholm, MarcusAbrikosov, Igor
By organisation
Theoretical Physics The Institute of Technology
In the same journal
Physical Review B Condensed Matter
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 288 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf