liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Questionable collapse of the bulk modulus in CrN
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
2010 (English)In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 9, no 4, 283-284 p.Article in journal, Letter (Other academic) Published
Abstract [en]

In this comment we show that the main conclusion in a previous article, claiminga drastic increase in compressibility of CrN at the cubic to orthorhombic phasetransition, is unsupported by first-principles calculations. We show that if thecubic CrN phase is considered as a disordered magnetic material, as supported bydifferent experimental data, rather then non-magnetic, the bulk modulus is almostunaffected by the transition.

Place, publisher, year, edition, pages
London, UK: Nature Publishing Group, 2010. Vol. 9, no 4, 283-284 p.
Keyword [en]
CrN, phase-transition, magnetism, bulk modulus, first-principles
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-60438DOI: 10.1038/nmat2722ISI: 000275901000002OAI: oai:DiVA.org:liu-60438DiVA: diva2:356617
Available from: 2010-10-13 Created: 2010-10-13 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Configurational and Magnetic Interactions in Multicomponent Systems
Open this publication in new window or tab >>Configurational and Magnetic Interactions in Multicomponent Systems
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is a theoretical study of configurational and magnetic interactions in multicomponent solids. These interactions are the projections onto the configurational and magnetic degrees of freedom of the underlying electronic quantum mechanical system, and can be used to model, explain and predict the properties of materials. For example, the interactions govern temperature induced configurational and magnetic order-disorder transitions in Heusler alloys and ternary nitrides.

In particular three perspectives are studied. The first is how the interactions can be derived from first-principles calculations at relevant physical conditions. The second is their consequences, like the critical temperatures for disordering, obtained with e.g. Monte Carlo simulations. The third is their origin in terms of the underlying electronic structure of the materials.

Intrinsic defects in the half-Heusler system NiMnSb are studied and it is found that low-energy defects do not destroy the important half-metallic property at low concentrations. Deliberate doping of NiMnSb with 3d-metals is considered and it is found that replacing some Ni with extra Mn or Cr creates new strong magnetic interactions which could be beneficial for applications at elevated temperature. A self-consistent scheme to include the effects of thermal expansion and one-electron excitations in the calculation of the magnetic critical temperature is introduced and applied to a study of Ni1−xCuxMnSb.

A supercell implementation of the disordered local moments approach is suggested and benchmarked for the treatment of paramagnetic CrN as a disordered magnetic phase. It is found that the orthorhombic-to-cubic phase transition in this nitride can be understood as a first-order magnetic order-disorder transition. The ferromagnetism in Ti1−xCrxN solid solutions, an unusual property in nitrides, is explained in terms of a charge transfer induced change in the Cr-Cr magnetic interactions.

Cubic Ti1−xAlxN solid solutions displays a complex and concentration dependent phase separation tendency. A unified cluster expansion method is presented that can be used to simulate the configurational thermodynamics of this system. It is shown that short range clustering do influence the free energy of mixing but only slightly change the isostructural phase diagram as compared to mean-field estimates.

Place, publisher, year, edition, pages
Linköping: Linköpings Universitet, 2010. 98 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1334
Keyword
Magnetic interactions, Configurational thermodynamics, Curie temperature, theoretical physics, magnetism, TiAlN, TiN, AlN, CrN, TiCrN, nitrides, NiMnSb, NiCuMnSb, Heusler alloys, spintronics, half-metallic, spinodal decomposition, first-principles, ab-initio
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-60446 (URN)978-91-7393-330-8 (ISBN)
Public defence
2010-09-09, Planck, Fysikhuset, Campus Valla, Linköping University, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2010-11-17 Created: 2010-10-13 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Alling, BjörnMarten, TobiasAbrikosov, Igor

Search in DiVA

By author/editor
Alling, BjörnMarten, TobiasAbrikosov, Igor
By organisation
Theoretical PhysicsThe Institute of Technology
In the same journal
Nature Materials
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 384 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf