liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
On the Estimation of Transfer Functions, Regularizations and Gaussian Processes – Revisited
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-8655-2655
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
2010 (English)In: Proceedings of the 18th IFAC World Congress, 2010, 2303-2308 p.Conference paper (Refereed)
Abstract [en]

Intrigued by some recent results on impulse response estimation by kernel and nonparametric techniques, we revisit the old problem of transfer function estimation from input-output measurements.We formulate a classical regularization approach, focused on finite impulse response (FIR) models, and find that regularization is necessary to cope with the high variance problem. This basic, regularized least squares approach is then a focal point for interpreting other techniques, like Bayesian inference and Gaussian process regression.

Place, publisher, year, edition, pages
2010. 2303-2308 p.
Keyword [en]
System identification, Transfer function estimation, Reqularization
National Category
Control Engineering
URN: urn:nbn:se:liu:diva-60986DOI: 10.3182/20110828-6-IT-1002.00573ISBN: 978-3-902661-93-7OAI: diva2:360030
18th IFAC World Congress, Milano, Italy, 28 August-2 September, 2011
Swedish Foundation for Strategic Research Swedish Research Council


Available from: 2010-11-01 Created: 2010-11-01 Last updated: 2016-01-11
In thesis
1. Regularization for Sparseness and Smoothness: Applications in System Identification and Signal Processing
Open this publication in new window or tab >>Regularization for Sparseness and Smoothness: Applications in System Identification and Signal Processing
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In system identification, the Akaike Information Criterion (AIC) is a well known method to balance the model fit against model complexity. Regularization here acts as a price on model complexity. In statistics and machine learning, regularization has gained popularity due to modeling methods such as Support Vector Machines (SVM), ridge regression and lasso. But also when using a Bayesian approach to modeling, regularization often implicitly shows up and can be associated with the prior knowledge. Regularization has also had a great impact on many applications, and very much so in clinical imaging. In e.g., breast cancer imaging, the number of sensors is physically restricted which leads to long scantimes. Regularization and sparsity can be used to reduce that. In Magnetic Resonance Imaging (MRI), the number of scans is physically limited and to obtain high resolution images, regularization plays an important role.

Regularization shows-up in a variety of different situations and is a well known technique to handle ill-posed problems and to control for overfit. We focus on the use of regularization to obtain sparseness and smoothness and discuss novel developments relevant to system identification and signal processing.

In regularization for sparsity a quantity is forced to contain elements equal to zero, or to be sparse. The quantity could e.g., be the regression parameter vectorof a linear regression model and regularization would then result in a tool for variable selection. Sparsity has had a huge impact on neighboring disciplines, such as machine learning and signal processing, but rather limited effect on system identification. One of the major contributions of this thesis is therefore the new developments in system identification using sparsity. In particular, a novel method for the estimation of segmented ARX models using regularization for sparsity is presented. A technique for piecewise-affine system identification is also elaborated on as well as several novel applications in signal processing. Another property that regularization can be used to impose is smoothness. To require the relation between regressors and predictions to be a smooth function is a way to control for overfit. We are here particularly interested in regression problems with regressors constrained to limited regions in the regressor-space e.g., a manifold. For this type of systems we develop a new regression technique, Weight Determination by Manifold Regularization (WDMR). WDMR is inspired byapplications in biology and developments in manifold learning and uses regularization for smoothness to obtain smooth estimates. The use of regularization for smoothness in linear system identification is also discussed.

The thesis also presents a real-time functional Magnetic Resonance Imaging (fMRI) bio-feedback setup. The setup has served as proof of concept and been the foundation for several real-time fMRI studies.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 89 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1351
Regularization, sparsity, smothness, lasso, l1, fMRI, bio-feedback
National Category
Engineering and Technology
urn:nbn:se:liu:diva-60531 (URN)978-91-7393-287-5 (ISBN)
Public defence
2010-11-26, I101, Hus I, Campus Valla, Linköping University, Linköping, 10:15 (Swedish)
Available from: 2010-11-03 Created: 2010-10-16 Last updated: 2010-11-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Chen, TianshiOhlsson, HenrikLjung, Lennart
By organisation
Automatic ControlThe Institute of Technology
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 253 hits
ReferencesLink to record
Permanent link

Direct link