liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Preconditioned GMRES Method for Solving a 1D Sideways Heat  Equation
Linköping University, Department of Mathematics, Scientific Computing. Linköping University, The Institute of Technology.
Linköping University, Department of Mathematics, Scientific Computing. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-2281-856X
2010 (English)Report (Other academic)
Abstract [en]

The sideways Heat equation (SHE) is a model of the problem of determining the temperature on the surface of a body from the interior measurements. Mathematically it can be formulated as a non-characteristic Cauchy problem for a  parabolic partial differential equation. This problem is severely ill-posed: the solution does not depend continuously on the data. We use a preconditioned Generalized Minimum Residuals Method (GMRES) to solve a 1D SHE. Regularization is used in the preconditioner as well as truncating the GMRES algorithm. Numerical experiments demonstrate that the proposed method works well.

Place, publisher, year, edition, pages
Linköping University Electronic Press , 2010. , 16 p.
Series
LiTH-MAT-R, ISSN 0348-2960 ; 2010:6
Keyword [en]
Cauchy problem, ill-posed, iterative methods, GMRES, heat equation
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-61152OAI: oai:DiVA.org:liu-61152DiVA: diva2:360739
Available from: 2010-11-04 Created: 2010-11-04 Last updated: 2013-08-30Bibliographically approved

Open Access in DiVA

fulltext(473 kB)868 downloads
File information
File name FULLTEXT01.pdfFile size 473 kBChecksum SHA-512
cfae1d259957df50201afe2be2a10213655c59ae04b4f81b0aa267f013ff09e86d8d09f64fd20483bc84acfc5fd8d5ddcdbb4f68f42847e96993d5d97886bbc7
Type fulltextMimetype application/pdf

Authority records BETA

Ranjbar, ZohrehEldén, Lars

Search in DiVA

By author/editor
Ranjbar, ZohrehEldén, Lars
By organisation
Scientific ComputingThe Institute of Technology
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 868 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 249 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf