liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ZigBee Radio with External Power Amplifier and Low-Noise Amplifier
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology. (Communication Electronics)
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology. (Communication Electronics)
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology. (Communication Electronics)
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology. (Communication Electronics)
2010 (English)In: Sensors & Transducers Journal, ISSN 1726-5479, Vol. 118, no 7, 110-121 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents the performance study of a ZigBee module with both an external power amplifier and a low-noise amplifier, measured in outdoor and indoor environments, respectively. Our previous study has already shown that the indoor campus environment such as walls and floors would reduce the radio link range drastically and the packet error rate increased. In this study, both an external power amplifier and a low-noise amplifier have been added to a ZigBee module to increase both the transmitter power and receiver sensitivity. It is shown that with an external power amplifier and a low-noise amplifier the outdoor radio range can reach up to 1600 m with a negligible packet error rate compared to 144 m without any external amplifier for point-to-point radio connection. Thus, by increasing both the transmitter power and receiver sensitivity the radio range can be increased significantly. The power consumption issue with the added amplifiers is studied as well, indicating that the module can still be battery driven with a battery lifetime of about 9 years at a normal sampling rate to the sensor.

Place, publisher, year, edition, pages
2010. Vol. 118, no 7, 110-121 p.
Keyword [en]
ZigBee, Power amplifier, Low-noise amplifier, Radio range
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-61215OAI: oai:DiVA.org:liu-61215DiVA: diva2:360915
Projects
CultureBee
Available from: 2010-11-05 Created: 2010-11-05 Last updated: 2010-11-16
In thesis
1. Study of Wired and Wireless Data Transmissions
Open this publication in new window or tab >>Study of Wired and Wireless Data Transmissions
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The topic of this dissertation is divided into two parts where the first part presents high-speed data transmission on flexible cables and the second part presents a wireless remote monitoring and controlling system with wireless data transmission.

The demand on high-speed data communications has pushed both the wired and wireless technologies to operate at higher and higher frequencies. Classic Kirchhoff’s voltage and current laws cannot be directly applied, when entering the microwave spectrum for frequency above 1 GHz. Instead, the transmission line theory should be used. Most of the wired communication products use bit-serial cables to connect devices. To transfer massive data at high speed, parallel data transfer techniques can be utilized and the speed can be increased by the number of parallel lines or cables, if the transfer rate per line or cable can be maintained. However, the lines or cables must be well-shielded so the crosstalk between them can be minimized.

Differential lines can also be used to increase the data speed further compared to the single-ended lines, along with saving the power consumption and reducing the electromagnetic interference. However, characterization for differential lines is not as straight forward as for single-ended cases using standard S-parameters. Instead, mixed-mode S-parameters are needed to describe the differential-, common- and mixed-mode characteristics of the differential signal. Mixed-mode S-parameters were first introduced in 1995 and are now widely used. However, improvements of the theory can still be found to increase the accuracy of simulations and measurements, which is proposed and presented in this dissertation.

The interest of wireless solution to do remote control and monitoring for cultural building has been increasing. Available solutions on the market are mostly wired and very expensive. The available wireless solutions often offer limited network size with point-to-point radio link. Furthermore, the wired solution requires operation on the building, which is not the preferred way since it will damage the historical values of cultural heritage buildings. Wireless solutions on the other hand can offer flexibility when deploying the network, i.e., operation on the building can be avoided or kept to the minimum.

A platform for wireless remote monitoring and control has been established for various deployments at different cultural buildings. The platform has a modular design to ease future improvement and expansion of the system. The platform is based on the ZigBee standard, which is an open standard, specified with wireless sensor network as focus. Three different modules have been developed. The performance has been studied and optimized. The network has been deployed at five different locations in Sweden for data collection and verification of the system stability.

The remote monitoring and control functions of the developed platform have received a nomination for the Swedish Embedded Award 2010 and been demonstrated at the Scandinavia Embedded Conference 2010 in Stockholm.Communication

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 61 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1352
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:liu:diva-61298 (URN)978-91-7393-286-8 (ISBN)
Public defence
2010-12-15, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 09:34 (English)
Opponent
Supervisors
Available from: 2010-11-16 Created: 2010-11-11 Last updated: 2010-11-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to the Article

Authority records BETA

Huynh, AllanZhang, JingchengYe, Qin-ZhongGong, Shaofang

Search in DiVA

By author/editor
Huynh, AllanZhang, JingchengYe, Qin-ZhongGong, Shaofang
By organisation
Physics and ElectronicsThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf