liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A TCAD approach for non-linear evaluation of microwave power transistor and its experimental verification by LDMOS
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
National Engineering and Scientific Commission (NESCOM), P.O. Box 2801, Islamabad, Pakistan.
National Engineering and Scientific Commission (NESCOM), P.O. Box 2801, Islamabad, Pakistan.
Show others and affiliations
2010 (English)In: Journal of Computational Electronics, ISSN 1569-8025, E-ISSN 1572-8137, Vol. 9, no 2, 79-86 p.Article in journal (Refereed) Published
Abstract [en]

A simulation technique is developed in TCAD to study the non-linear behavior of RF power transistor. The technique is based on semiconductor transport equations to swot up the overall non-linearity’s occurring in RF power transistor. Computational load-pull simulation technique (CLP) developed in our group, is further extended to study the non-linear effects inside the transistor structure by conventional two-tone RF signals, and initial simulations were done in time domain. The technique is helpful to detect, understand the phenomena and its mechanism which can be resolved and improve the transistor performance. By this technique, the third order intermodulation distortion (IMD3) was observed at different power levels. The technique was successfully implemented on a laterally-diffused field effect transistor (LDMOS). The value of IMD3 obtained is −22 dBc at 1-dB compression point (P 1 dB) while at 10 dB back off the value increases to −36 dBc. Simulation results were experimentally verified by fabricating a power amplifier with the similar LDMOS transistor.

Place, publisher, year, edition, pages
SpringerLink , 2010. Vol. 9, no 2, 79-86 p.
Keyword [en]
Power amplifier, Non-linear analysis, Technology CAD, RF transistor, Time-domain analysis
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-61593DOI: 10.1007/s10825-010-0307-xOAI: oai:DiVA.org:liu-61593DiVA: diva2:370557
Available from: 2010-11-17 Created: 2010-11-17 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Optimization of LDMOS Transistor in Power Amplifiers for Communication Systems
Open this publication in new window or tab >>Optimization of LDMOS Transistor in Power Amplifiers for Communication Systems
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The emergence of new communication standards has put a key challenge for semiconductor industry to develop RF devices that can handle high power and high data rates simultaneously. The RF devices play a key role in the design of power amplifiers (PAs), which is considered as a heart of base-station. From economical point of view, a single wideband RF power module is more desirable rather than multiple narrowband PAs especially for multi-band and multi-mode operation. Therefore, device modeling has now become much more crucial for such applications. In order to reduce the device design cycle time, the researchers also heavily rely on computer aided design (CAD) tools. With improvement in CAD technology the model extraction has become more accurate and device physical structure optimization can be carried out with less number of iterations.

LDMOS devices have been dominating in the communication field since last decade and are still widely used for PA design and development. This thesis deals with the optimization of RFLDMOS transistor and its evaluation in different PA classes, such as linear, switching, wideband and multi-band applications. For accurate evaluation of RF-LDMOS transistor parameters, some techniques are also developed in technology CAD (TCAD) using large signal time domain computational load-pull (CLP) methods.

Initially the RF-LDMOS is studied in TCAD for the improved RF performance. The physical intrinsic structure of RF-LDMOS is provided by Infenion Technologies AG. A reduced surface field (RESURF) of low-doped drain (LDD) region is considered in detail because it plays an important role in RF-LDMOS devices to obtain high breakdown voltage (BVDS). But on the other hand, it also reduces the RF performance due to high on-resistance (Ron). The excess interface state charges at the RESURF region are introduced to reduce the Ron, which not only increases the dc drain current, but also improve the RF performance in terms of power, gain and efficiency. The important achievement is the enhancement in operating frequency up to 4 GHz. In LDD region, the effect of excess interface charges at the RESURF is also compared with dual implanted-layer of p-type and n-type. The comparison revealed that the former provides 43 % reduction in Ron with BVDS of 70 V, while the later provides 26 % reduction in Ron together with BVDS of 64 - 68 V.

In the second part of my research work, computational load pull (CLP) simulation technique is used in TCAD to extract the impedances of RF-LDMOS at different frequencies under large signal operation. Flexible matching is an issue in the design of broadband or multi-band PAs. Optimum impedance of RF-LDMOS is extracted at operating frequencies of 1, 2 and 2.5 GHz in class AB PA. After this, CLP simulation technique is further developed in TCAD to study the non-linear behavior of RF devices. Through modified CLP technique, non-linear effects inside the transistor structure are studied by conventional two-tone RF signals in time domain. This is helpful to detect and understand the phenomena, which can be resolved to improve the device performance. The third order inter-modulation distortion (IMD3) of RF- LDMOS was observed at different power levels. The IMD3 of −22 dBc is obtained at 1-dB compression point (P1-dB), while at 10 dB back off the value increases to −36 dBc. These results were also verified experimentally by fabricating a linear PA. Similarly, CLP technique is developed further for the analysis of RF devices in high efficiency operation by investigating the odd harmonic effects for the design of class-F PA. RF-LDMOS can provide a power added efficiency (PAE) of 81.2 % in class-F PA at 1 GHz in TCAD simulations. The results are verified by design and fabrication of class-F PA using large signal model of the similar device in ADS. In fabrication, a PAE of 76 % is achieved.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 64 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1346
Keyword
RF-LDMOS, power amplifiers, technology CAD, load-pull, non-linear analysis, and switching analysis
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-61599 (URN)978-91-7393-294-3 (ISBN)
Public defence
2010-12-03, Plank, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15
Opponent
Supervisors
Available from: 2010-11-17 Created: 2010-11-17 Last updated: 2010-11-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kashif, Ahsan-UllahSvensson, ChristerWahab, Qamar-ul

Search in DiVA

By author/editor
Kashif, Ahsan-UllahSvensson, ChristerWahab, Qamar-ul
By organisation
Semiconductor MaterialsThe Institute of TechnologyElectronic Devices
In the same journal
Journal of Computational Electronics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 266 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf