liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Generalizing and Optimizing Fractional Frequency Reuse in Broadband Cellular Radio Access Networks
Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
2012 (English)In: EURASIP Journal on Wireless Communications and Networking, ISSN 1687-1472, E-ISSN 1687-1499, Vol. 230Article in journal (Refereed) Published
Abstract [en]

For broadband cellular access based on orthogonal frequency divisionmultiple access (OFDMA), fractional frequency reuse (FFR) is one ofthe key concepts for mitigating inter-cell interference and therebyoptimizing cell-edge performance. In standard FFR, the number of OFDMAsub-bands and the reuse factor are both fixed. Whereas this works wellfor an idealized cell pattern, it is neither directly applicable noradequate for real-life networks with very irregular cell layouts. Inthis paper, we generalize the standard FFR to allow for flexibilities inthe total number of sub-bands as well as the number of sub-bands ineach cell-edge zone, enabling network-adaptive FFR. Two powerassignment strategies that use fixed power per sub-band prior tosub-band allocation and apply cell-specific power derived from thenumber of sub-bands allocated to each cell-edge zone, respectively,are investigated. Optimization algorithms based on local search aredeveloped for sub-band allocation to maximize the cell-edgethroughput. Evaluations using networks with realistic radiopropagation conditions demonstrate the applicability of the generalizedand optimized FFR in performance engineering of OFDMA networks.

Place, publisher, year, edition, pages
2012. Vol. 230
Keyword [en]
orthogonal frequency division multiple access; fractional frequency reuse; optimization; local search.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-62762DOI: 10.1186/1687-1499-2012-230ISI: 000315038300001OAI: oai:DiVA.org:liu-62762DiVA: diva2:374217
Available from: 2010-12-03 Created: 2010-12-03 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Coverage Planning and Resource Allocation in Broadband Cellular Access: Optimization Models and Algorithms
Open this publication in new window or tab >>Coverage Planning and Resource Allocation in Broadband Cellular Access: Optimization Models and Algorithms
2010 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The last two decades have witnessed a booming in the use of cellular communication technologies. Billions of people are now enjoying the benefits of mobile communications. This thesis deals with planning and optimization of broadband cellular access network design and operation. The problem types considered include coverage planning, power optimization, and channel assignment. Mathematical modeling and optimization methods have been used to approach the problems.

Coverage planning is a classical problem in cellular network deployment. A minimum-power covering problem with overlap constraints between cell pairs is considered. The objective is to minimize the total power consumption for coverage, while maintaining a necessary level of overlap to facilitate handover. For this coverage planning problem, the thesis develops two integer programming models and compares the models' strength in approaching global optimality. In addition, a tabu search algorithm has been developed for solving the problem in large-scale networks.

For High Speed Downlink Packet Access (HSDPA) networks, transmission power is a crucial factor to performance. Minimizing the power allocated for coverage enables significant power saving that can be used for HSDPA data transmission, thus enhancing the HSDPA performance. Exploring this potential power saving, a mathematical model targeting cell-edge HSDPA performance has been developed. In determining the optimal coverage pattern for maximizing power saving, the model also allows for controlling the degree of soft handover for Universal Mobile Telecommunications System (UMTS) Release 99 services. In addition to the mathematical model, heuristic algorithms based on local search and repeated local search are developed.

For Orthogonal Frequency Division Multiple Access (OFDMA), which is used in Long Term Evolution (LTE) networks, inter-cell interference control is a key performance engineering issue. The aspect is of particular importance to cell-edge throughput. Frequency reuse schemes for mitigating inter-cell interference at cell-edge areas have received an increasing amount of research attention. In the thesis, a generalization of the standard Fractional Frequency Reuse (FFR) scheme is introduced. The generalization addresses OFDMA networks with irregular cell layout.  Optimization algorithms using local search have been proposed to find the frequency reuse pattern of generalized FFR that maximizes the cell-edge area performance.

For the problems considered in the thesis, computational experiments of the optimization models and algorithms using data sets representing realistic planning scenarios have been carried out. The experimental results demonstrate the effectiveness of the proposed solution approaches.

Place, publisher, year, edition, pages
Norrköping: Linköping University Electronic Press, 2010. 21 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1454
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-62764 (URN)LIU-TEK-LIC-2010:25 (Local ID)978-91-7393-279-0 (ISBN)LIU-TEK-LIC-2010:25 (Archive number)LIU-TEK-LIC-2010:25 (OAI)
Presentation
2010-12-17, K3, Kåkenhus, Campus Valla, Linköpings university, Norrköpinf, 13:15 (English)
Opponent
Supervisors
Available from: 2010-12-30 Created: 2010-12-03 Last updated: 2010-12-30Bibliographically approved
2. Performance Engineering of Mobile Broadband: Capacity Analysis, Cellular Network Optimization, and Design of In-Building Solutions
Open this publication in new window or tab >>Performance Engineering of Mobile Broadband: Capacity Analysis, Cellular Network Optimization, and Design of In-Building Solutions
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The rapid evolution of mobile communication technologies is making mobile broadband a reality. With over 6 billion cellular connections and the booming of mobile data, mobile broadband leads the technology and service innovation within the domain of information and communication technologies. The thesis deals with performance engineering of mobile broadband. The problems investigated range from fundamental capacity analysis, resource planning and optimization of broadband cellular networks, to design of in-building solutions based on distributed antenna systems. Mathematical modeling and optimization methods have been used to approach the problems.

The first three papers address capacity analysis in wireless communications, where the establishment of any communication link is subject to the Signal to Interference plus Noise Ratio (SINR) threshold. Paper I addresses the maximum link activation problem. The paper introduces a new exact algorithm by reformulating the SINR constraints with equivalent but numerically more effective inequalities, leading to an approach performing significantly better in proving optimality in comparison to the conventional algorithm. Paper II explores the notion of collaborative rate selection for Interference Cancellation (IC) to maximize the transmission rate in wireless networks. The paper analyzes the problem complexity and develops integer programming models for both single stage single-link IC and single stage parallel IC. Paper III studies the performance gain of single-stage and multi-stage IC to optimal link activation. Compact integer programming formulations have been developed and a thorough numerical study is performed.

The next three papers are devoted to planning and optimization of radio resources in cellular mobile broadband networks. Paper IV considers a minimum-power coverage problem with overlap requirements between cell pairs. The paper develops two integer programming models and compares their strength in approaching global optimality. A tabu search algorithm has been developed for large-scale networks. Paper V deals with transmission power planning and optimization in High Speed Downlink Packet Access (HSDPA) networks. A method for enhancing the HSDPA performance by minimizing the power for coverage and reallocating the power to data transmission has been considered. A mathematical model targeting cell-edge HDSPA performance and accounting for soft handover in Universal Mobile Telecommunications System (UMTS) has been developed. In addition, heuristic algorithms based on local search and repeated local search are developed. Paper VI focuses on frequency planning for inter-cell interference mitigation in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The paper generalizes the standard Fractional Frequency Reuse (FFR) concept and addresses its performance for networks with irregular topology. Optimization algorithms using local search have been proposed to find the frequency reuse pattern of generalized FFR for maximizing the edge-user performance. The investigations in Papers IV-VI base the experiments on data sets representing realistic planning scenarios to demonstrate the effectiveness of the proposed approaches.

To face the challenge of in-building mobile broadband service, In-Building Distributed Antennas Systems (IB-DAS) has been proposed. Paper VII tackles the problem of optimal topology design of IB-DAS systems, where a number of in-building distributed antennas are connected to a base station via coaxial cables and power equipments. The paper develops efficient mathematical models for topology design as well as equipment selection, and presents case studies of realistic IB-DAS deployment scenarios.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 40 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1504
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-89715 (URN)978-91-7519-675-6 (ISBN)
Public defence
2013-04-09, K3, K°akenhus, Campus Norrköping, Linköpings universitet, Norrköping, 14:15 (English)
Supervisors
Available from: 2013-03-04 Created: 2013-03-04 Last updated: 2013-03-04Bibliographically approved

Open Access in DiVA

fulltext(3120 kB)269 downloads
File information
File name FULLTEXT01.pdfFile size 3120 kBChecksum SHA-512
cea11d9f9e95376e9dbb56ca22837b3141d4e9912f6f0ea45dae067076909daac4ab9e54a084b6271f27464f1a9674bf10c13f0425a4b32e250c1de98891fb34
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Chen, LeiYuan, Di

Search in DiVA

By author/editor
Chen, LeiYuan, Di
By organisation
Communications and Transport SystemsThe Institute of Technology
In the same journal
EURASIP Journal on Wireless Communications and Networking
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 269 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 278 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf