liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Determination of nitrogen doping concentration in doped 4H-SiC epilayers by low temperature photoluminescence
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-5768-0244
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Solid State Electronics, Royal Institute of Technology, SE-164 40 Kista, Sweden.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
2005 (English)In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. 72, no 2-3, 254-257 p.Article in journal (Refereed) Published
Abstract [en]

A complete calibration of nitrogen concentration in doped 4H-SiC material is presented. This is done in the very large range of doping available today, i.e. from low 1014 to 1019 cm-3. The samples are 4H-SiC films fabricated by hot-wall chemical vapour deposition. Low temperature photoluminescence is used as the experimental tool. For doping concentrations less than 8 × 1017 cm-3 comparison between the intensity of various luminescence lines is used, whereas for doping higher than 3 × 1018 cm-3 the energy position of an observed broad band allows the determination of the doping level.

Place, publisher, year, edition, pages
2005. Vol. 72, no 2-3, 254-257 p.
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
URN: urn:nbn:se:liu:diva-15063DOI: 10.1238/Physica.Regular.072a00254OAI: oai:DiVA.org:liu-15063DiVA: diva2:37747
Note
On the day of the defence the status of article IV was: Submitted to Applied Physics Letter.Available from: 2008-10-13 Created: 2008-10-13 Last updated: 2014-10-08Bibliographically approved
In thesis
1. CVD Growth of Silicon Carbide for High Frequency Applications
Open this publication in new window or tab >>CVD Growth of Silicon Carbide for High Frequency Applications
2001 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Silicon Carbide (SiC) is an important wide band gap semiconductor with outstanding electronic properties. With figures of merit far better than silicon, SiC is believed to replace and outcompete silicon in many applications using high frequencies, high voltage and high temperatures. With the introduction of seeded sublimation technique, a realisation of substrates with large diameter and high quality became possible. Recent progress in the bulk growth using high temperature chemical vapour deposition (HTCVD) has shown excellent results with high purity substrates with semi insulating (SI) properties. The availability of high quality SI substrates allows the fabrication of microwave devices with low rf losses such as the Metal Schottky Field Effect Transistor (MESFET). With the introduction of the hot-wall CVD technique, thick low doped n-type epitaxial layers have been grown for high power devices (> 4 kV) such as the PiN diode.

The main contribution of the present work relates to the investigation of growth of MESFET structures. The goal has been to demonstrate the ability to grow MESFET structures using the hot-wall CVD technique. The challenge with abrupt interfaces and controlled doping has been investigated. A comprehensive investigation has been made on how nitrogen and aluminum dopant atoms incorporate into the SiC lattice using the hot-wall CVD technique. Fundamental research of MESFET structures has been combined with growth of device structures for both Swedish and European groups as well as industries. The research has been focused towards the understanding of dopant incorporation, characterization of doped epitaxial layers, the growth of device structures, the modelling of temperature distribution in a hot-wall susceptor and the development of growth systems for future up scaling.

In paper 1 we present how the nitrogen dopant is incorporated into the SiC lattice. The influence of several different growth parameters on the nitrogen incorporation is presented. Equilibrium thermodynamical calculations have been performed to give a further insight into the incorporation mechanism. The investigation shows that the N2 molecule itself does not contribute directly to the nitrogen incorporation, however, molecules like the HCN and HNC are more likely.

In paper 2 the incorporation of the aluminum dopant into the SiC lattice is investigated in a similar way as the nitrogen incorporation in paper 1. The results show that the aluminum incorporation in SiC is mainly controlled by the carbon coverage on the SiC surface. The investigation shows that it is difficult to obtain high aluminum doping on carbon face whereas the silicon face is sensitive to changes of the growth parameters. High growth rate resulted in a diffusion controlled incorporation.

In Paper 3 we present the results from the growth of MESFET structures as well as characterization of the structures and final device properties. Knowledge taken from paper 1 and 2 was used to improve the abruptness of the grown structures.

Paper 4 presents the results obtained by low temperature photoluminescence (LTPL) on separately grown 4H-SiC epitaxial layers. Doping calibration curves for nitrogen in the doping range from 1⋅1014 to 2⋅1019 cm-3 are presented. A discussion concerning the Mott transition is also presented.

Paper 5 presents the results of the use of simulation to investigate the heating of a hot-wall CVD reactor. New susceptor and coil design are tested. The simulation has been verified with experimental heating tests which show excellent agreement. The new design has a temperature variation of less than 0.5 % over more than 70% of the total susceptor length in addition to a decreased power input of 15 %.

In the final two papers, paper 6 and 7, we present work of growth of AlN on SiC. Thin films were grown and characterized with different techniques concerning crystal quality and thickness. The use of infrared reflectance and the features of the AlN reststrahl reflectance band allowed us to determine the thickness of AlN films as thin as 250 Å.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2001. 35 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 708
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
urn:nbn:se:liu:diva-15070 (URN)91-7373-081-5 (ISBN)
Public defence
2001-09-07, Planck, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2008-10-13 Created: 2008-10-13 Last updated: 2014-10-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. thesis

Authority records BETA

Henry, AnneForsberg, UrbanJanzén, Erik

Search in DiVA

By author/editor
Henry, AnneForsberg, UrbanJanzén, Erik
By organisation
Semiconductor MaterialsThe Institute of Technology
In the same journal
Physica Scripta
Other Engineering and Technologies not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf