liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A quasi-boundary-value method for the Cauchy problem for elliptic equations with  nonhomogeneous Neumann data
Lanzhou University.
Linköping University, Department of Mathematics, Scientific Computing. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-2281-856X
Lanzhou University.
2010 (English)In: Journal of Inverse and Ill-Posed Problems, ISSN 0928-0219, E-ISSN 1569-3945, Vol. 18, no 6, 617-645 p.Article in journal (Refereed) Published
Abstract [en]

A Cauchy problem for elliptic equations with nonhomogeneous Neumann datain a cylindrical domain is investigated in this paper. For the theoretical aspect the a-prioriand a-posteriori parameter choice rules are suggested and the corresponding error estimatesare obtained. About the numerical aspect, for a simple case results given by twomethods based on the discrete Sine transform and the finite difference method are presented;an idea of left-preconditioned GMRES (Generalized Minimum Residual) methodis proposed to deal with the high dimensional case to save the time; a view of dealingwith a general domain is suggested. Some ill-posed problems regularized by the quasiboundary-value method are listed and some rules of this method are suggested.

Place, publisher, year, edition, pages
Walter de Gruyter , 2010. Vol. 18, no 6, 617-645 p.
Keyword [en]
Elliptic equation, a priori, a posteriori, discrete sine transform, finite difference method, quasi-boundary-value method, left-preconditioned GMRES
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-63347DOI: 10.1515/JIIP.2010.028ISI: 000285499000003OAI: oai:DiVA.org:liu-63347DiVA: diva2:378756
Available from: 2010-12-16 Created: 2010-12-16 Last updated: 2017-12-11

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Eldén, Lars

Search in DiVA

By author/editor
Eldén, Lars
By organisation
Scientific ComputingThe Institute of Technology
In the same journal
Journal of Inverse and Ill-Posed Problems
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf