liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electroplating of nickel in grooves under the influence of low and medium frequency ultrasound
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
SP Technical Research Institute of Sweden, Box 857, 501 15 Borås, Sweden/School of Engineering, Jönköping University, Sweden.
ENKOTEC A/S, Denmark.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2837-3656
2011 (English)In: Journal for Electrochemistry and Plating Technology, ISSN 1866-7406, Vol. 1, no 3, 19-28 p.Article in journal (Refereed) Published
Abstract [en]

The effect of ultrasonics on filling properties has been studied by Ni electroplating from a sulphamate electrolyte in high aspect ratio grooves. The experiments have been performed with two different modes of ultrasound: a) 25 kHz ultrasound with an effect of 225 W directed perpendicular to the substrate surface; b) ultrasonic standing waves of 100 kHz and 400 kHz parallel to the substrate surface. It was found that both methods improve the filling in grooves that are between 0.35 and 1 mm wide with aspect ratios between 0.6 and 3, compared to electroplating with conventional agitation. Under the investigated conditions the 400 kHz standing wave parallel to the surface was most efficient to improve filling of grooves.

Place, publisher, year, edition, pages
2011. Vol. 1, no 3, 19-28 p.
Keyword [en]
Filling; Electrodeposition; Ultrasound; Nickel; Electroforming
National Category
Metallurgy and Metallic Materials Other Materials Engineering Manufacturing, Surface and Joining Technology
Identifiers
URN: urn:nbn:se:liu:diva-63621DOI: 10.12850/ISSN2196-0267.JEPT643OAI: oai:DiVA.org:liu-63621DiVA: diva2:381732
Available from: 2010-12-28 Created: 2010-12-28 Last updated: 2016-08-31Bibliographically approved
In thesis
1. Surface Technology for Optical and Electrical Connectors
Open this publication in new window or tab >>Surface Technology for Optical and Electrical Connectors
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis treats surface engineering with the purpose of improved quality of optical and electricalconnectors with a focus on electroplated and magnetron sputtered materials. In electroforming of tools formanufacturing optical connectors, the influence of ultrasonic agitation on intrinsic stresses and fillingproperties of electroplated Ni has been studied. It is established that the ultrasonic agitation at the substratesurface during deposition impacts the intrinsic stresses making it possible to increase deposition rate viacurrent density, with stress-free or low-stress levels in the Ni layers. Reduced variations of the intrinsicstress over the surface with the current density is a further important result. Filling of grooves byelectroplating of Ni using ultrasonic agitation is demonstrated. This is due to increasing mass transport ofspecies into the grooves compared to conventional pumped agitation. The enhanced filling propertiesmakes it possible to electroplate Ni in the bottom of high-aspect-ratio grooves. In order to industriallyimplement new nanocomposite coatings on electronic connectors, studies have been performed regardingthe thermal diffusion barrier properties against Cu for Ti-Si-C and Ti-Si-C-Ag nanocomposites, depositeddirectly onto Cu substrates or with sputtered Ni, Ti or electroplated Ni as an intermediate coating. Theapplication of an electroplated Ni diffusion barrier coating, hinders Cu from reaching the surface of thenanocomposites. Also, Ti-Si-C-Ag nanocomposite deposited on magnetron sputtered Ni or Ti on Cusubstrates hinder Cu from diffusing to the surface after annealing. The contact resistance of Ag-Pdtopcoated Ti-Si-C-Ag-Pd and Ti-Si-C-Ag nanocomposite coatings in contact with hard gold is shown tocompete with hard gold in contact with itself, as electrical contact coatings at contact forces around 5 N.Ag-Pd topcoated Ti-Si-C-Ag-Pd in contact with hard gold is shown to have approximately the same contactresistance as hard gold in contact with hard gold at contact forces around 0.1 N, which here is in the 10 mΩrange, while Ti-Si-C-Ag nanocomposite coatings in contact with hard gold has a contact resistance that isup to 10 times higher. The overall contribution of this thesis can be summarised as a deeper knowledge andunderstanding of techniques and coatings, that help reduce cost and increase reliability of electronics.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 73 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1342
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-63626 (URN)978-91-7393-299-8 (ISBN)
Public defence
2010-11-26, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2010-12-28 Created: 2010-12-28 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Hultman, Lars

Search in DiVA

By author/editor
Hultman, Lars
By organisation
Thin Film PhysicsThe Institute of Technology
Metallurgy and Metallic MaterialsOther Materials EngineeringManufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 323 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf