liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
HDR imaging evaluation of a NT-proBNP test with a mobile phone.
Thammasat University, Prathum-Thani, Thailand.
Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
2011 (English)In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 26, no 5, 2107-2113 p.Article in journal (Refereed) Published
Abstract [en]

The determination of NT-proBNP levels is key for the monitoring of patients with diagnosed heart failure and it is a routine measurement typically performed at health care centers, which would benefit from decentralized alternatives. Here we investigate the quantitative evaluation of a well-established NT-proBNP test using a standard mobile phone (Nokia 6720) as measuring platform rather than a dedicated instrument. A Java ME software developed for this application controls the illumination and imaging of the proBNP test under defined time intervals, which enables the composition of multi-exposure sets that are processed as high dynamic range (HDR) images for contrast enhancement. The results show that HDR processing significantly increases the sensitivity and resolution of the technique achieving a performance within the diagnostics range. These results demonstrate the feasibility to exploit a ubiquitous device to decentralize the evaluation of a routine test and identify key processing alternatives to bring the performance of such systems within the diagnostics range.

Place, publisher, year, edition, pages
2011. Vol. 26, no 5, 2107-2113 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-63708DOI: 10.1016/j.bios.2010.09.015ISI: 000286904400051PubMedID: 20926279OAI: oai:DiVA.org:liu-63708DiVA: diva2:382348
Available from: 2010-12-30 Created: 2010-12-30 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Integrated Optical Solutions for Ubiquitous Sensing
Open this publication in new window or tab >>Integrated Optical Solutions for Ubiquitous Sensing
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ubiquitous chemical sensing aims at exploiting consumer electronic devices as temporary chemical sensing platforms. These devices are a highly disseminated infrastructure, not presently being exploited for chemical sensing purposes. The goal of the ubiquitous chemical sensing field is to create the methodologies and adapted devices to profit from this unexploited resource.

DVD drives, flat bed scanners and computer screens used in combination with web cameras, and mobile phones have been demonstrated as measuring platforms, during the past 10 years.

In particular the combination of computer screens with web cameras, a technique called the computer screen photo-assisted technique (CSPT), is the most versatile approach to support multiple types of optical detection phenomena, and together with mobile phones are the most ubiquitous type of platforms.

The versatility of CSPT comes from the ease with which one can configure a spectrally controlled, 2D micro-positioned, linearly polarized, wide angle and internally modulated illumination with a programmable screen, just by controlling the displayed contents. Concurrently, the imaging devices in CSPT enable one to capture arbitrary assay layouts, the evaluation of which can then be numerically customized.

The full exploitation of the CSPT platform requires optically adapted sensing interfaces and specialized methods, in order to increase sensitivity and make use of all available information, for a thorough and complete chemical sensing analysis. In this thesis I have explored the foundations of CSPT sensing on integrated devices, developing methods and sensing’s interfaces that provide enhanced optical detection customized to the CSPT platform.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2010. 63 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1355
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-63709 (URN)978-91-7393-269-1 (ISBN)
Public defence
2010-12-15, Plank, E-huset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2010-12-30 Created: 2010-12-30 Last updated: 2011-01-03Bibliographically approved
2. Optical devices and methods for distributed lab-on-a-chip analyses
Open this publication in new window or tab >>Optical devices and methods for distributed lab-on-a-chip analyses
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lab-on-a-chip (LOC) technologies entail the miniaturization of analytical systems, and the reduction of required sample and reagent volumes. LOC devices offer compact alternatives to classical instrumentation while delivering comparable performance and disposable formats. These aspects make disposable LOC a clear candidate to support distributed chemical sensing applications; however, the need of accessory services and readout obstructs the materialization of pervasively distributed LOC solutions.

In this thesis methods and devices to solve this problem are investigated. A distinctive aspect of this work is the pursuit of solutions based on disposable LOC elements specifically conceived to exploit ubiquitous infrastructure for readout and evaluation.

Consumer electronic devices, such as cell phones are ubiquitous platforms with residual capabilities that can be used for chemical sensing, if properly interfaced. This work investigates elements and tools needed to empower cell phones as readers of disposable LOC devices and commercial disposable tests.

Access to flexible fabrication of LOC devices at low cost is an important requisite for testing ideas and implementing customized solutions. A first contribution in this thesis is the development of a platform for mask less fabrication of 3D microstructures, which coexists on a routine fluorescence microscope. This microscope projection lithography system (MPLS) is capable of controlled 3D micro structuring, including cavities and cantilever geometries, and the sealing of monolithic micro cavities to glass substrates as well as the connection to large scale service areas. This fabrication platform and other fabrication methods were used along this thesis to provide disposable optical and fluidic components.

Besides custom-made LOC solutions there are well-established commercial disposable devices, which are essentially compatible with decentralized diagnosis, except for the use of specialized readers that confine them to medical centers. The implementation of high dynamic range (HDR) imaging with standard cell phones, using the phone screen to control exposure, shows that sensitivity and resolution can be boosted to permit robust evaluation of this type of disposable tests, in decentralized scenarios.

Solutions employing commercial tests, which have not been designed for cell phone evaluation, are typically suboptimal and the investigation of customized LOC components occupies a central role in this thesis. Accordingly, one important aspect to evaluate LOC devices in compact configurations is to be able to image the LOC at a close distance from the phone camera, a condition for which phones cameras are not able to focus.

In addition, different phone brands and models have different optical specifications, and a practical refocusing solution should adapt to all of them. In this work an adaptive lens concept, complemented by phone time-lapse acquisition, which can be integrated in disposable LOCs, is demonstrated.

The implementation of sensitive detection methods, such as surface plasmon resonance (SPR), which is compatible with label free protocols that simplify sample conditioning, is central to the materialization of ubiquitous LOCs readable with cell phones. In this thesis a disposable optical coupler, conditioning illumination taken from the phone screen, is used to create an angle resolved SPR signal from a LOC, which is read with the phone front camera. Tested performance is comparable with commercial compact SPR modules and detection of β2 microglobulin, which is an established marker for cancer, inflammatory disorders, and kidney disease, is within the diagnostics range for blood and urine.

Finally, fluorescence detection within classical LOC devices is tailored to be detectable with consumer cameras. In this case a disposable optical coupler and fluidics is designed to condition laser illumination into total internal reflection excitation, while DSLR and phone cameras capture optically separated fluorescence. The system configuration supports a broad dynamic range and HDR imaging enables localized resolution boost at selected detection ranges. Detection of free fucose, a diagnostic marker for liver cirrhosis and several cancer forms, is shown feasible with a HDR implementation, as one last example of practical LOC detection schemes for decentralized scenarios.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 54 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1492
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-86183 (URN)978-91-7519-732-6 (ISBN)
Public defence
2013-02-08, Plank, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-12-10 Created: 2012-12-10 Last updated: 2012-12-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Macken, StephenSuska, AnkeFilippini, Daniel

Search in DiVA

By author/editor
Macken, StephenSuska, AnkeFilippini, Daniel
By organisation
Applied Physics The Institute of Technology
In the same journal
Biosensors & bioelectronics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 174 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf