liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
New reactive polymer for protein immobilisation on sensor surfaces
Cranfield University, Cranfield MK43 0AL, Beds, England.
Cranfield University, Cranfield MK43 0AL, Beds, England.
Cranfield University, Cranfield MK43 0AL, Beds, England.
Cranfield University, Cranfield MK43 0AL, Beds, England.
Show others and affiliations
2009 (English)In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 24, no 5, 1365-1371 p.Article in journal (Refereed) Published
Abstract [en]

Immobilisation of biorecognition elements on transducer surfaces is a key step in the development of biosensors. The immobilisation needs to be fast, cheap and most importantly should not affect the biorecognition activity of the immobilised receptor. A novel protocol for the covalent immobilisation of biomolecules containing primary amines using an inexpensive and simple polymer is presented. This tridimensional (3D) network leads to a random immobilisation of antibodies on the polymer and ensures the availability of a high percentage of antibody binding sites. The reactivity of the polymer is based on the reaction between primary amines and thioacetal groups included in the polymer network. These functional groups (thioacetal) do not need any further activation in order to react with proteins, making it attractive for sensor fabrication. The novel polymer also contains thiol derivative groups (disulphide groups or thioethers) that promote self-assembling on a metal transducer surface. For demonstration purposes the polymer was immobilised on Au Biacore chips. The resulting polymer layer was characterised using contact angle meter, atomic force microscopy (AFM) and ellipsometry. A general protocol suitable for the immobilisation of bovine serum albumin (BSA), enzymes and antibodies such as polyclonal anti-microcystin-LR antibody and monoclonal anti-prostate specific antigen (anti-PSA) antibody was then optimised. The affinity characteristics of developed immunosensors were investigated in reaction with microcystin-LR, and PSA. The calculated detection limit for analytes depended on the properties of antibodies. The detection limit for microcystin-LR was 10 ng mL(-1) and for PSA 0.01 ng mL(-1). The non-specific binding of analytes to synthesised polymers was very low. The polymer-coated chips were stored for up to 2 months without any noticeable deterioration in their ability to react with proteins. These findings make this new polymer very promising for the development of low-cost, easy to prepare and sensitive biosensors. (C) 2008 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
Elsevier Science B.V., Amsterdam. , 2009. Vol. 24, no 5, 1365-1371 p.
Keyword [en]
SPR; Thiol compounds; Polymer; Protein immobilisation; PSA; Microcystin-LR
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-65166DOI: 10.1016/j.bios.2008.07.070ISI: 000263199800051OAI: diva2:394914
Available from: 2011-02-04 Created: 2011-02-04 Last updated: 2013-10-04

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
P. F. Turner, Anthony
In the same journal
Biosensors & bioelectronics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 39 hits
ReferencesLink to record
Permanent link

Direct link