liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
IgG Rheumatoid Factor Against the Four Human Fc-gamma Subclasses in Early Rheumatoid Arthritis (the Swedish TIRA Project)
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Clinical and Experimental Medicine, Rheumatology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Rheumatology in Östergötland.
Linköping University, Department of Clinical and Experimental Medicine, Rheumatology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Rheumatology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Rheumatology in Östergötland.ORCID iD: 0000-0002-0153-9249
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Rheumatoid factor (RF), i.e. a family of autoantibodies against the Fc part of IgG, is an important seromarker of rheumatoid arthritis (RA). Traditional particle agglutination without disclosing the antibody isotype remains the predominating diagnostic method in clinical routine. Although IgG-RF attracts pathogenic interest, its detection remains technically challenging. The present study aimed at developing a set of tests identifying IgG-RFs directed against the four IgG subclasses. IgG-RF against either subclass of human IgG-Fc were analyzed with four novel enzyme-linked immunosorbent assays (ELISAs) utilizing four recombinant human Fc-gamma fragments (hIgG1-4) as sources of antigen. Sera from 40 patients with recent-onset RA (20 seropositive and 20 seronegative by IgM-RF and IgA-RF-isotype specific ELISA) were analyzed. Sera from 20 healthy blood donors served as reference. Among the IgM-/IgA-RF positive RA-sera, IgG-RF was found directed against hIgG1, hIgG4, and most notably, with strikingly high reactivity against hIgG2, but not hIgG3. Significant correlations were seen between IgG-RF against hIgG2-Fc and IgA-RF (r = 0.513) and IgM-RF (r = 0.736) levels. Further prospective studies are warranted to elucidate any correlation to disease course and outcome.

National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-65535OAI: oai:DiVA.org:liu-65535DiVA: diva2:396470
Available from: 2011-02-10 Created: 2011-02-10 Last updated: 2015-08-31Bibliographically approved
In thesis
1. Structure and Interactions of Human IgG-Fc
Open this publication in new window or tab >>Structure and Interactions of Human IgG-Fc
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis involves structure and interaction studies of the Fc fragment of human IgG. For this purpose, hIgG-Fc of different subclasses were cloned and expressed in the eukaryotic host Pichia pastoris, where relevant protein modification at the post-translational level can be obtained.

Sometimes, changes in pH, temperature and salt concentration or addition of moderate amounts of denaturants to a protein solution are associated with the protein forming non-natively folded states, such as the molten globule or the A state. IgG and some parts thereof are capable of forming another, so called alternatively folded state, usually induced by acidification in the presence of anions. This state is in many aspects related to the molten globule and the A state but with distinguishing properties related mainly to chemical stability and formation of oligomeric structures. The first part of this thesis describes two different alternatively folded states of hIgG-Fc of subclass 4. One of them was induced by decreasing the pH of the protein solution. Observed structural changes were highly dependent on the concentration of sodium chloride. The alternatively folded protein showed drastic changes in its secondary structure compared to the native protein and significant tertiary structure was lost. Moreover, it displayed an apparently increased chemical stability and had surface exposed hydrophobic patches resulting in the formation of higher order assemblies. In addition, it was shown for the first time that thermal induction of an alternatively folded state is also possible, with similar, but not identical, properties as the acid-induced state. Heat incubation for 20 hours at neutral pH and at a physiological salt concentration further resulted in the formation of protein aggregates. The dye Congo red had affinity for these aggregates, and when viewed under polarized light, it showed green birefringence. They also displayed binding of Thioflavin T and had a typical fibril appearance in the transmission electron microscope. Hence, the formed aggregates share key properties with structures constituting amyloid.

The second part of this thesis is focused on interactions of the Fc-fragment with respect to both Fcγ-receptors on monocytes and the IgG autoantibody rheumatoid factor. Immune complexes and their binding to Fcγ-receptors are of pathogenic interest to rheumatoid arthritis. A surface mimic presenting full IgG molecules was designed as an in vitro immune complex model. Utilizing self-assembled monolayers composed of alkanethiolates with different chemical functionalities, the lateral IgG density could be tuned, enabling control of monocyte interaction with the surface. Importantly, the IgG molecules were homogeneously oriented to expose the Fc-fragment. The protein repellent properties of these  surfaces ensured that only differences in IgG concentration determined variations in cellular adhesion. In a separate study the specificities of IgG rheumatoid factor with respect to the different subclasses of hIgG-Fc were investigated, using sera from patients with early rheumatoid arthritis. Strikingly high IgG-RF reactivity against hIgG2-Fc was observed, together with raised levels against hIgG1-Fc and hIgG4-Fc. No reactivity against hIgG3-Fc was found.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2011. 71 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1361
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-65536 (URN)978-91-7393-241-7 (ISBN)
Public defence
2011-03-11, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 09:15 (Swedish)
Opponent
Supervisors
Available from: 2011-02-10 Created: 2011-02-10 Last updated: 2015-08-31Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Kanmert, DanielKastbom, AlfAlmroth, GunnelSkogh, ThomasEnander, KarinWetterö, Jonas

Search in DiVA

By author/editor
Kanmert, DanielKastbom, AlfAlmroth, GunnelSkogh, ThomasEnander, KarinWetterö, Jonas
By organisation
Department of Physics, Chemistry and BiologyThe Institute of TechnologyRheumatologyFaculty of Health SciencesDepartment of Rheumatology in ÖstergötlandSensor Science and Molecular Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 96 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf