liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Analyticity of layer potentials and L-2 solvability of boundary value problems for divergence form elliptic equations with complex L-infinity coefficientsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt223",{id:"formSmash:j_idt223",widgetVar:"widget_formSmash_j_idt223",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2011 (English)In: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 226, no 5, 4533-4606 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier Science B.V. Amsterdam , 2011. Vol. 226, no 5, 4533-4606 p.
##### Keyword [en]

Singular integrals, Square functions, Layer potentials, Divergence form elliptic equations, Local Tb theorem
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-66901DOI: 10.1016/j.aim.2010.12.014ISI: 000287460000023OAI: oai:DiVA.org:liu-66901DiVA: diva2:405239
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
Available from: 2011-03-21 Created: 2011-03-21 Last updated: 2017-12-11Bibliographically approved

We consider divergence form elliptic operators of the form L = -div A (x)del, defined in Rn+1 = {(x, t) is an element of R-n x R}, n andgt;= 2, where the L-infinity coefficient matrix A is (n + 1) x (n + 1), uniformly elliptic, complex and t-independent. We show that for such operators, boundedness and invertibility of the corresponding layer potential operators on L-2 (R-n) = L-2(partial derivative R-+(n+1)) is stable under complex, L-infinity perturbations of the coefficient matrix. Using a variant of the Tb Theorem, we also prove that the layer potentials are bounded and invertible on L-2(R-n) whenever A (x) is real and symmetric (and thus, by our stability result, also when A is complex, parallel to A - A(0)parallel to(infinity) is small enough and A(0) is real, symmetric, L-infinity and elliptic). In particular, we establish solvability of the Dirichlet and Neumann (and Regularity) problems, with L-2 (resp. (L) over dot(1)(2)) data, for small complex perturbations of a real symmetric matrix. Previously, L-2 solvability results for complex (or even real but non-symmetric) coefficients were known to hold only for perturbations of constant matrices (and then only for the Dirichlet problem), or in the special case that the coefficients A (j,n+1)= 0 = A(n+1,j), 1 andlt;= j andlt;= n, which corresponds to the Kato square root problem.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});