liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Systematic investigation of biomolecular interactions using combined frequency and motional resistance measurements
Uppsala University.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Attana AB.
Attana AB.
Show others and affiliations
2011 (English)In: SENSORS AND ACTUATORS B-CHEMICAL, ISSN 0925-4005, Vol. 153, no 1, 135-144 p.Article in journal (Refereed) Published
Abstract [en]

The resonance frequency of acoustic biosensors is today used as a label-free technique for detecting mass changes on sensor surfaces. In combination with an appropriate continuous flow system it has earlier been used for affinity and kinetic rate determination. Here, we assess the potential of a modified acoustic biosensor, monitoring also the real-time dissipation through the resistance of the sensor, to obtain additional kinetic information related to the structure and conformation of the molecules on the surface. Actual interaction studies. including an attempt to determine avidity, are presented along with thorough verification of the experimental setup utilizing true viscous load exposure together with protein and DNA immobilizations. True viscous loads show a linear relationship between resistance and frequency as expected. However, in the interaction studies between antibodies and proteins, as well as in the immobilization of DNA and proteins, higher surface concentrations of interacting molecules led to a decrease (i.e. deviation from the linear trend) in the differential resistance to frequency ratio. This is interpreted as increased surface rigidity at higher surface concentrations of immobilized molecules. Consequently, studies that aim at obtaining biological binding information, such as avidity, from real-time resistance and dissipation data should be conducted at low surface concentrations. In addition, the differential resistance to frequency relationship was found to be highly dependent on the rigidity of the preceding layer(s) of immobilized molecules. This dependence can be utilized to obtain a higher signal-to-noise ratio for resistance measurement by using low surface densities of immobilized interaction partners.

Place, publisher, year, edition, pages
Elsevier Science B.V., Amsterdam. , 2011. Vol. 153, no 1, 135-144 p.
Keyword [en]
Biosensor, Interaction analysis, QCM, Dissipation, Motional resistance, Kinetics
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-67543DOI: 10.1016/j.snb.2010.10.019ISI: 000289019300020OAI: diva2:411266
Available from: 2011-04-18 Created: 2011-04-18 Last updated: 2011-04-18

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wingqvist, Gunilla
By organisation
Department of Physics, Chemistry and BiologyThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 57 hits
ReferencesLink to record
Permanent link

Direct link