liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unifying electrochemical and field-effect mechanisms in electrolyte-gated organic field-effect transistors
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology. (Organic Electronics)
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology. (Organic Electronics)
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology. (Organic Electronics)ORCID iD: 0000-0001-5154-0291
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology. (Organic Electronics)ORCID iD: 0000-0001-8845-6296
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The combination of electrolytes and organic semiconductors has opened up new opportunities in photonics1, electronics2 and in energy storage3. In most of these devices, the key mechanisms involve the transport of charge carriers (electrons or ions) across the organic semiconductor-electrolyte interface. The formation of an electric double layer (EDL) at this polarized interface is fuzzier than at a metal-electrolyte interface since weak intermolecular interactions in the organic solid favour the penetration of ions4. An EDL established at the organic semiconductor-electrolyte interface, defined by a sheet of electronic charge carriers and a sheet of ions, has been proposed recently as the basic mechanism for electrolyte-gated organic field-effect transistors (EGOFETs)5, 6. Here, organic thin film transistors are used as a probe to investigate the organic semiconductor-electrolyte interface. We demonstrate that the capacitance value of the gate counter electrode dictates the degree of advancement7 of the electrochemical halfreaction (the extent of the reaction) at this interface. This finding unifies the mechanisms proposed for EGOFETs and organic electrochemical transistors (OECTs); and sets the ground description for an electrochemical half-reaction induced entirely by capacitive coupling.

National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-67886OAI: oai:DiVA.org:liu-67886DiVA: diva2:414016
Available from: 2011-05-02 Created: 2011-05-02 Last updated: 2017-02-03Bibliographically approved
In thesis
1. Polyelectrolyte-Based Capacitors and Transistors
Open this publication in new window or tab >>Polyelectrolyte-Based Capacitors and Transistors
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Polymers are very attractive materials that can be tailored for specific needs and functionalities. Based on their chemical structure, they can for instance be made electrically insulating or semiconducting with specific mechanical properties. Polymers are often processable from a solution, which enables the use of conventional low-cost and high-volume manufacturing techniques to print electronic devices onto flexible substrates. A multitude of polymer-based electronic and electrochemical devices and sensors have been developed, of which some already has reached the consumer market.

This thesis focuses on polarization characteristics in polyelectrolyte-based capacitor structures and their role in sensors, transistors and supercapacitors. The fate of the ions in these capacitor structures, within the polyelectrolyte and at the interfaces between the polyelectrolyte and various electronic conductors (a metal, a semiconducting polymer or a network of carbon nanotubes), is of outermost importance for the device function. The humidity-dependent polarization characteristics in a polyelectrolyte capacitor are used as the sensing probe for wireless readout of a passively operated humidity sensor circuit. This sensor circuit can be integrated into a printable low-cost passive sensor label. By varying the humidity level, limitations and possibilities are identified for polyelectrolyte-gated organic field-effect transistors. Further, the effect of the ionic conductivity is investigated for polyelectrolyte-based supercapacitors. Finally, by using an ordinary electrolyte instead of a polyelectrolyte and a high-surface area (supercapacitor) gate electrode, the device mechanisms proposed for electrolyte-gated organic transistors are unified.

Place, publisher, year, edition, pages
Norrköping: Linköping University Electronic Press, 2011. 56 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1370
Keyword
Organic electronics, Polarization, Polyelectrolyte, Transistor, Polymer, Sensor, Capacitor
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-67852 (URN)978-91-7393-160-1 (ISBN)
Public defence
2011-06-13, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2011-05-02 Created: 2011-04-29 Last updated: 2013-09-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Larsson, OscarLaiho, AriBerggren, MagnusCrispin, Xavier

Search in DiVA

By author/editor
Larsson, OscarLaiho, AriBerggren, MagnusCrispin, Xavier
By organisation
Department of Science and TechnologyThe Institute of TechnologyPhysics and Electronics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf