liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Elastic properties of fcc Fe-Mn-X (X = Al, Si) alloys studied by theory and experiment
Rhein Westfal TH Aachen.
Rhein Westfal TH Aachen.
Rhein Westfal TH Aachen.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-7563-1494
Show others and affiliations
2011 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 59, no 8, 3145-3155 p.Article in journal (Refereed) Published
Abstract [en]

We have studied the influence of Al and Si additions on the elastic properties of face-centered cubic (fcc) Fe-Mn random alloys with Fe/Mn ratios of 4.00 and 2.33 using ab initio calculations. When Al is added up to 8 at.% the shearing elastic constants (C-11-C-12)/2 and C-44 decrease, resulting in a drop of similar to 20% in shear and similar to 19% in Youngs modulus. In fcc Fe-Mn-Si alloys, the trends in the elastic constants are similar, but less drastic, with a similar to 7% shear and similar to 6% Youngs modulus decrease when Si is added up to 8 at.%. The Fe/Mn ratio exhibits a minor influence on the shear and Youngs modulus values at constant Al and Si contents. To assess the quality of the ab initio data Fe-Mn-Al and Fe-Mn-Si thin films with an fcc structure were combinatorially synthesized and the elastic properties measured using nanoindentation. For both systems the measured and calculated lattice parameters are in good agreement. Although the measured Youngs modulus data showed significant scatter due to the high surface roughness, they are in good agreement with the predicted values. For the Fe-Mn-Al system the calculations generally underestimate the experimental data by similar to 15%. For the Fe-Mn-Si system the calculated data are in general lower by similar to 10% than the experimentally determined values. The presented results are of relevance for multicomponent alloy design, since the effect of Si and Al addition on the elastic properties of Fe-Mn alloys can be predicted based on ab initio data.

Place, publisher, year, edition, pages
Elsevier Science B.V., Amsterdam. , 2011. Vol. 59, no 8, 3145-3155 p.
Keyword [en]
Iron alloys, Sputtering, Elastic properties, Ab initio calculations, Nanoindentation
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-68186DOI: 10.1016/j.actamat.2011.01.054ISI: 000290053100024OAI: diva2:416827
Available from: 2011-05-13 Created: 2011-05-13 Last updated: 2015-08-19Bibliographically approved
In thesis
1. Theoretical Descriptions of Complex Magnetism in Transition Metals and Their Alloys
Open this publication in new window or tab >>Theoretical Descriptions of Complex Magnetism in Transition Metals and Their Alloys
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, various methods for studying solids by simulations of quantummechanical equations, have been applied to transition metals and their alloys. Transition metals such as Fe, Ni, and Mn, are not only cornerstones in modern technology, but also key components in the very fabric of the Earth interior. Such systems show highly complex magnetic properties. As shown within this thesis, to understand and predict their properties from a microscopic level, is still a highly demanding task for the the quantum theory of solids. This is especially crucial at elevated temperature and pressure.

It is found that the magnetic degrees of freedom are inseparable from the structural, elastic and chemical properties of such alloy systems. This requires theoretical descriptions capable of handling this interplay. Such schemes are discussed and demonstrated.

Furthermore, the importance of the description of Coulomb correlation effects is demonstrated by DFT calculations and also by going beyond the one-electron description by the LDA+DMFT method.

It is also shown how magnetic interactions in the half-metallic compound NiMnSb can be manipulated by alloying. The stability of these alloys is  also evaluated in calculations, and verified by experimental synthesis at ambient conditions.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 130 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1452
National Category
Natural Sciences
urn:nbn:se:liu:diva-78781 (URN)978-91-7519-885-9 (ISBN)
Public defence
2012-06-14, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 13:15 (English)
Available from: 2012-06-20 Created: 2012-06-20 Last updated: 2015-08-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ekholm, MarcusAbrikosov, Igor
By organisation
Theoretical PhysicsThe Institute of Technology
In the same journal
Acta Materialia
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 136 hits
ReferencesLink to record
Permanent link

Direct link