liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
SAXS Models of TGFBIp Reveal a Trimeric Structure and Show That the Overall Shape Is Not Affected by the Arg124His Mutation
Aarhus University.
Aarhus University.
Aarhus University.
Aarhus University.
Show others and affiliations
2011 (English)In: JOURNAL OF MOLECULAR BIOLOGY, ISSN 0022-2836, Vol. 408, no 3, 503-513 p.Article in journal (Refereed) Published
Abstract [en]

Human transforming growth factor beta induced protein (TGFBIp) is composed of 683 residues, including an N-terminal cysteine-rich (EMI) domain, four homologous fasciclin domains, and an Arg-Gly-Asp (RGD) motif near the C-terminus. The protein is of interest because mutations in the TGFBI gene encoding TGFBIp lead to corneal dystrophy (CD), a condition where protein aggregates within the cornea compromise transparency. The complete three-dimensional structure of TGFBIp is not yet available, with the exception of a partial X-ray structure of the archetype FAS1 domain derived from Drosophila fasciclin-1. In this study, small-angle X-ray scattering (SAXS) models of intact wild-type (WT) human TGFBIp and a mutant (R124H) are presented. The mutation R124H leads to a variant of granular CD. The deduced structure of the TGFBIp monomer consists of four FAS1 domains in a simple "beads-on-a-string" arrangement, constructed by the superimposition of four consecutive Drosophila fasciclin domains. The SAXS-based model of the TGFBIp R124H mutant displayed no structural differences from WT. Both WT TGFBIp and the R124H mutant formed trimers at higher protein concentrations. The similar association properties and three-dimensional shape of the two proteins suggest that the mutation does not induce any major structural rearrangements, but points towards the role of other corneal-specific factors in the formation of corneal R124H deposits.

Place, publisher, year, edition, pages
Elsevier Science B.V., Amsterdam , 2011. Vol. 408, no 3, 503-513 p.
Keyword [en]
oligomerization, low-resolution structure, corneal dystrophy, ab initio modeling, rigid-body fit
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-68218DOI: 10.1016/j.jmb.2011.02.052ISI: 000290067400010OAI: diva2:416872
Available from: 2011-05-13 Created: 2011-05-13 Last updated: 2011-05-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Jonsson, Bengt-Harald
By organisation
Molecular Biotechnology The Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 57 hits
ReferencesLink to record
Permanent link

Direct link