liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High Performance System Simulation Using Multiple Processor Cores
Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-6371-1390
Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
2011 (English)In: The Twelfth Scandinavian International Conference on Fluid Power, SICFP'11 / [ed] Harri Sairiala & Kari T. Koskinen, 2011Conference paper, Published paper (Refereed)
Abstract [en]

Future research and development will depend on high-speed simulations, especially for large and complex systems. Rapid prototyping, optimization and real-time simulations require  simulation tools that can take full advantage of  computer hardware.  Recent developments  in the computer market indicate  a change in focus from increasing the speed of processor cores towards increasing the number of cores in each processor. HOPSAN is a simulation tool for fluid power and mechatronics, developed at Linköping University. It  is based upon the transmission line  modeling  (TLM)  technique. This method is very suitable for taking advantage of multi-core  processors.  This paper presents  the  implementation  of multi-core support in the next generation of HOPSAN. The concept is to divide the  model  into equally sized  groups of  independent components,  to make it possible to  simulate  them  in separate threads. Reducing overhead costs and finding an effective sorting algorithm constitute  critical steps for maximizing the benefits.  Experimental results show  a significant reduction in simulation time. Improvement of algorithms in combination with a continuous increase in the number of processor cores can potentially  lead to further  increases  in simulation performance. 

Place, publisher, year, edition, pages
2011.
Keyword [en]
Multi-core, simulation, transmission line element method, transmission line modelling, fluid power, system simulation
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-68373ISBN: 978-952-15-2517-9 (print)ISBN: 978-952-15-2520-9 (print)ISBN: 978-952-15-3273-3 (print)OAI: oai:DiVA.org:liu-68373DiVA: diva2:418367
Conference
The Twelfth Scandinavian International Conference on Fluid Power, SICFP'11, 18th–20th May, Tampere, Finland
Available from: 2011-05-23 Created: 2011-05-23 Last updated: 2016-04-07
In thesis
1. Multi-Threaded Distributed System Simulations: Using Bi-Lateral Delay Lines
Open this publication in new window or tab >>Multi-Threaded Distributed System Simulations: Using Bi-Lateral Delay Lines
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

As the speed increase of single-core processors keeps declining, it is important to adapt simulation software to take advantage of multi-core technology. There is a great need for simulating large-scale systems with good performance. This makes it possible to investigate how different parts of a system work together, without the need for expensive physical prototypes. For this to be useful, however, the simulations cannot take too long, because this would delay the design process. Some uses of simulation also put very high demands on simulation performance, such as real-time simulations, design optimization or Monte Carlo-based sensitivity analysis. Being able to quickly simulate large-scale models can save much time and money.

The power required to cool a processor is proportional to the processor speed squared. It is therefore no longer profitable to keep increasing the speed. This is commonly referred to as the "power wall". Manufacturers of processors have instead begun to focus on building multi-core processors consisting of several cores working in parallel. Adapting program code to multi-core architectures constitutes a major challenge for software developers.

Traditional simulation software uses centralized equation-system solvers, which by nature are hard to make parallel. By instead using distributed solvers, equations from different parts of the model can be solved simultaneously. For this to be effective, it is important to minimize overheadcosts and to make sure that the workload is evenly distributed over the processor cores.

Dividing an equation system into several parts and solving them separately means that time delays will be introduced between the parts. If these occur in the right locations, this can be physically correct, since it also takes some time for information to propagate in physical systems. The transmission line  element method (TLM) constitutes an effective method for separating system models by introducing impedances between components, causing physically motivated time delays.

Contributions in this thesis include parts of the development of the new generation of the Hopsan simulation tool, with support for TLM and distributed solvers. An automatic algorithm for partitioning models has been developed. A multi-threaded simulation algorithm using barrier synchronization has also been implemented.

Measurements of simulation time confirm that the simulation time is decreased almost proportionally to the number of processor cores for large models. The decrease, however, is reduced if the cores are divided on different processors. This was expected, due to the communication delay for processors communicating over shared memory. Experiments on real-time systems with four cores show that a four times as large model can be simulated without losing real-time performance.

The division into distributed solvers constitutes a sort of natural cosimulation. A future project could be to use this as a platform for linking different simulation tools together and simulating them with high performance. This would make it possible to model each part of the system in the most suitable tool, and then connect all parts into one large model.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 56 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1576
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-88025 (URN)LIU-TEK-LIC-2013:10 (Local ID)978-91-7519-694-7 (ISBN)LIU-TEK-LIC-2013:10 (Archive number)LIU-TEK-LIC-2013:10 (OAI)
Presentation
2013-02-08, A34, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2013-01-29 Created: 2013-01-29 Last updated: 2016-10-31Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Braun, RobertNordin, PeterEriksson, BjörnKrus, Petter

Search in DiVA

By author/editor
Braun, RobertNordin, PeterEriksson, BjörnKrus, Petter
By organisation
Fluid and Mechatronic SystemsThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1632 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf