liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detection of Gd2O3 Nanoparticles in Hematopoietic Cells for MRI Contrast Enhancement
Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

As the utility of magnetic resonance imaging (MRI) broadens, the importance of having specific and efficient contrast agents increases and there has been a huge development in the fields of molecular imaging and intracellular markers.

Previous studies have shown that gadolinium oxide (Gd2O3 ) nanoparticles generate higher relaxivity than currently available Gd chelates. The Gd2O3 nanoparticles are also promising for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles and to improve techniques for monitoring hematopoietic stem cell migration by MRI.

We studied particle uptake in two cell lines; the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles as well as superparamagnetic iron oxide particles (SPIOs) for comparison. In addition, it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by microscopic techniques, MRI and analyzed for particle content.

Results showed that particles were intracellular, however in Ba/F3 only sparsely. The relaxation times were shortened with increasing particle concentration. Overall relaxivities, r1 and r2 for Gd2O3 nanoparticles in all cell samples measured were 5.1 ± 0.3 and 14.9 ± 0.7 (s-1mM-1) respectively. Goodness of fit was 0.97 in both cases. Protamine sulfate treatment increased the uptake in both Ba/F3 cells and THP-1 cells.

Viability of treated cells was not significantly decreased and thus, we conclude that the use of Gd2O3 nanoparticles is suitable for this type of cell labeling by means of detecting and monitoring hematopoietic cells.

Keyword [en]
Gadolinium oxide; nanoparticles; magnetic resonance imaging; Ba/F3 cells, THP-1 cells.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-68801OAI: oai:DiVA.org:liu-68801DiVA: diva2:421080
Available from: 2011-06-07 Created: 2011-06-07 Last updated: 2013-09-04Bibliographically approved
In thesis
1. MRI Contrast Enhancement and Cell Labeling using Gd2O3 Nanoparticles
Open this publication in new window or tab >>MRI Contrast Enhancement and Cell Labeling using Gd2O3 Nanoparticles
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is an increasing interest for nanomaterials in bio-medical applications and in this work, nanoparticles of gadolinium oxide (Gd2O3 ) have been investigated as a novel contrast agent for magnetic resonance imaging (MRI). Relaxation properties have been studied in aqueous solutions as well as in cell culture medium and the nanoparticles have been explored as cell labeling agents. The fluorescent properties of the particles were used to visualize the internalization in cells and doped particles were investigated as a multimodal agent that could work as a fluorescent marker for microscopy and as a contrast enhancer for MRI. Fluorescent studies show that the Gd2O3 nanoparticles doped with 5% terbium have interesting fluorescent properties and that these particles could work as such multimodal contrast agent. Relaxivity measurements show that in aqueous solutions, there is a twofold increase in relaxivity for Gd2O3 compared to commercial agent Gd-DTPA. In cell culture medium as well as in cells, there is a clear T1 effect and an increase in signal intensity in T1-mapped images. The cellular uptake of Gd2O3 nanoparticles were increased with the use of transfection agent protamine sulfate. This work shows that Gd2O3 nanoparticles possess good relaxation properties that are retained in different biological environments. Gd2O3 particles are suitable as a T1 contrast agent, but seem also be adequate for T2 enhancement in forinstance cell labeling experiments.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2011. 73 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1230
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-68802 (URN)978-91-7393-215-8 (ISBN)
Public defence
2011-06-08, Wrannesalen, Universitetssjukhuset, CMIV, Campus US, Linköpings universitet, Linköping, 09:00 (Swedish)
Opponent
Supervisors
Available from: 2011-06-07 Created: 2011-06-07 Last updated: 2013-09-05Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Hedlund, AnnaAhrén, MariaGustafsson, HåkanAbrikossova, NataliaWarntjes, MarcelJönsson, Jan-IngvarUvdal, KajsaEngström, Maria

Search in DiVA

By author/editor
Hedlund, AnnaAhrén, MariaGustafsson, HåkanAbrikossova, NataliaWarntjes, MarcelJönsson, Jan-IngvarUvdal, KajsaEngström, Maria
By organisation
RadiologyCenter for Medical Image Science and Visualization, CMIVFaculty of Health SciencesSurface Physics and Chemistry The Institute of TechnologyDepartment of Physics, Chemistry and BiologyClinical PhysiologyExperimental HematologySensor Science and Molecular Physics
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 94 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf