liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Real-Time Quantification of Microscale Bioadhesion Events In situ Using Imaging Surface Plasmon Resonance (iSPR)
Newcastle University.
Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
Show others and affiliations
2011 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 3, no 6, 2085-2091 p.Article in journal (Refereed) Published
Abstract [en]

From macro- to nanoscales, adhesion phenomena are all-pervasive in nature yet remain poorly understood. In recent years, studies of biological adhesion mechanisms, terrestrial and marine, have provided inspiration for "biomimetic" adhesion strategies and important insights for the development of fouling-resistant materials. Although the focus of most contemporary bioadhesion research is on large organisms such as marine mussels, insects and geckos, adhesion events on the micro/nanoscale are critical to our understanding of important underlying mechanisms. Observing and quantifying adhesion at this scale is particularly relevant for the development of biomedical implants and in the prevention of marine biofouling. However, such characterization has so far been restricted by insufficient quantities of material for biochemical analysis and the limitations of contemporary imaging techniques. Here, we introduce a recently developed optical method that allows precise determination of adhesive deposition by microscale organisms in situ and in real time; a capability not before demonstrated. In this extended study we used the cypris larvae of barnacles and a combination of conventional and imaging surface plasmon resonance techniques to observe and quantify adhesive deposition onto a range of model surfaces (CH(3)-, COOH-, NH(3)-, and mPEG-terminated SAMs and a PEGMA/HEMA hydrogel). We then correlated this deposition to passive adsorption of a putatively adhesive protein from barnacles. In this way, we were able to rank surfaces in order of effectiveness for preventing barnacle cyprid exploration and demonstrate the importance of observing the natural process of adhesion, rather than predicting surface effects from a model system. As well as contributing fundamentally to the knowledge on the adhesion and adhesives of barnacle larvae, a potential target for future biomimetic glues, this method also provides a versatile technique for laboratory testing of fouling-resistant chemistries.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2011. Vol. 3, no 6, 2085-2091 p.
Keyword [en]
imaging SPR; barnacle cyprid; footprints; biological adhesion; biofouling
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-69884DOI: 10.1021/am2003075ISI: 000291781800043OAI: oai:DiVA.org:liu-69884DiVA: diva2:433313
Available from: 2011-08-09 Created: 2011-08-08 Last updated: 2017-12-08

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ekblad, TobiasAndersson, OlofLiedberg, Bo

Search in DiVA

By author/editor
Ekblad, TobiasAndersson, OlofLiedberg, Bo
By organisation
Sensor Science and Molecular Physics The Institute of Technology
In the same journal
ACS Applied Materials and Interfaces
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 157 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf