liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chemically fashioned ZnO nanowalls and their potential application for potentiometric cholesterol biosensor
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-6235-7038
Show others and affiliations
2011 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 98, no 25, 253705- p.Article in journal (Refereed) Published
Abstract [en]

Chemically fashioned zinc oxide (ZnO) nanowalls on aluminum wire have been characterized and utilized to fabricate a potentiometric cholesterol biosensor by an electrostatic conjugation with cholesterol oxidase. The sensitivity, specificity, reusability, and stability of the conjugated surface of ZnO nanowalls with thickness of similar to 80 nm have been investigated over a wide logarithmic concentrations of cholesterol electrolyte solution ranging from 1x10(-6)-1x10(-3) M. The presented biosensor illustrates good linear sensitivity slope curve (similar to 53 mV/decade) corresponding to cholesterol concentrations along with rapid output response time of similar to 5 s.

Place, publisher, year, edition, pages
American Institute of Physics , 2011. Vol. 98, no 25, 253705- p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-69852DOI: 10.1063/1.3599583ISI: 000292039900075OAI: oai:DiVA.org:liu-69852DiVA: diva2:433436
Note
Original Publication: M.Q. Israr, J.R. Sadaf, Omer Nur, Magnus Willander, S. Salman and B. Danielsson, Chemically fashioned ZnO nanowalls and their potential application for potentiometric cholesterol biosensor, 2011, Applied Physics Letters, (98), 25, 253705. http://dx.doi.org/10.1063/1.3599583 Copyright: American Institute of Physics http://www.aip.org/ Available from: 2011-08-10 Created: 2011-08-08 Last updated: 2017-12-08
In thesis
1. Chemical fabrication of ZnO nanostructures and their emission properties: Cholesterol biosensing applications utilizing ZnO and Graphene
Open this publication in new window or tab >>Chemical fabrication of ZnO nanostructures and their emission properties: Cholesterol biosensing applications utilizing ZnO and Graphene
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Zinc oxide (ZnO) is an inorganic compound, owing to wide band gap and large binding energy, and holds promising potential in the fields of semiconducting as well as piezoelectric applications with excellent stability and reliability. In addition, ZnO has a plenteous number of nanoscale structures containing unique physical, chemical, electrical, sensing and optical properties. These properties of nanostructures are being unrevealed extensively since last two decades and have become a prominent field of research in nanoscience and nanotechnology.

More specifically, the present dissertation deals with the low temperature synthesis of ZnO nanostructures (nanorods, nanotubes, nanodisks and nanowalls) on a variety of substrates such as silicon, gallium nitride, zinc foil, silver and aluminum; structural characterization and study of their luminescence properties. In paper 1 we investigated the synthesis mechanism of chemically fashioned ZnO nanotubes and their superior emission capability compared to ZnO nanorods with significant enhancements in ultraviolet and visible regions has been studied. These chemically synthesized ZnO nanotubes are further utilized to fabricate a heterostructure with p-GaN thin film in order to achieve white emission (Paper 2). The aim of Paper 3 is to understand the synthesis of ZnO nanorods and their transition into ZnO nanodisks at 55 °C along with temperature dependent micro-photoluminescence studies. However, the second half of the dissertation is devoted to the fabrication of potentiometric cholesterol biosensors through the conjugation of ZnO nanostructures and graphene nanosheets with a thin film of cholesterol oxidase. Paper 4 contains the fabrication of cholesterol biosensor by the deposition of ZnO nanorods on thin silver wire followed by their functionalization under the physical adsorption method. The specificity, reproducibility and stability of the biosensor have been investigated with good linearity slope curve of ~35 mV/ decade. The purpose of papers 5 and 6 is to enhance the sensitivity of the cholesterol biosensor by using ZnO nanowalls and graphene nanosheets as a matrix where the sensitivity of the slope curve is achieved as ~53 and ~82 mV/ decade, respectively.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2011. 67 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1387
Keyword
Zinc oxide, aqueous chemical synthesis, nanostructures, light emitting diode, electrochemical biosensor.
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-71323 (URN)978-91-7393-101-4 (ISBN)
Public defence
2011-09-23, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2011-10-11 Created: 2011-10-11 Last updated: 2014-01-15Bibliographically approved

Open Access in DiVA

fulltext(728 kB)679 downloads
File information
File name FULLTEXT01.pdfFile size 728 kBChecksum SHA-512
11b5472aa23d2aacd10fb9cbe8e22d76da5894d83e073fdeda3889820c33b2069270bbff01a995c1bfe0936c836925cb87f5b17c05f4608b0e097843e11f58ef
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Nur, OmerWillander, Magnus

Search in DiVA

By author/editor
Nur, OmerWillander, Magnus
By organisation
Department of Science and TechnologyThe Institute of Technology
In the same journal
Applied Physics Letters
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 679 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 265 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf