liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Steady Free-Surface Vortical Flows Parallel to the Horizontal Bottom
Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
Russian Academy of Sciences.
2011 (English)In: Quarterly Journal of Mechanics and Applied Mathematics, ISSN 0033-5614, E-ISSN 1464-3855, Vol. 64, no 3, 371-399 p.Article in journal (Refereed) Published
Abstract [en]

Steady, free-surface, vortical flows of an inviscid, incompressible, heavy fluid over a horizontal, rigid bottom are considered. All flows of constant depth are described for any Lipschitz vorticity distribution. It is shown that the values of Bernoullis constant, for which such flows exist, are greater than or equal to some critical value depending on the vorticity. For the critical value, only one flow exists and it is unidirectional. Supercritical flows exist for all values of Bernoullis constant greater than the critical one; every such flow is also unidirectional and its depth is smaller than that of the critical flow. Furthermore, at least one flow other than supercritical does exist for every value of Bernoullis constant greater than the critical one. It is found that for some vorticity distributions, the number of constant depth flows increases unrestrictedly as Bernoullis constant tends to infinity. However, all these flows, except for one or two, have counter-currents; their number depends on Bernoullis constant and increases by at least two every time when this constant becomes greater than a critical value (the above mentioned is the smallest of them), belonging to a sequence defined by the vorticity. A classification of vorticity distributions is presented; it divides all of them into three classes in accordance with the behaviour of some integral of the distribution on the interval [0, 1]. For distributions in the first class, a unidirectional subcritical flow exists for all admissible values of Bernoullis constant. For vorticity distributions belonging to the other two classes such a flow exists only when Bernoullis constant is less than a certain value. If Bernoullis constant is greater than this value, then at least one flow with counter-currents does exist along with the unidirectional supercritical flow. The second and third classes of vorticity distributions are distinguished from one another by the character of the counter-currents. If a distribution is in the second class, then a near-bottom counter-current is always present for sufficiently large values of Bernoullis constant. For distributions in the third class, a near-surface counter-current is always present for such values of the constant. Several examples illustrating the results are considered.

Place, publisher, year, edition, pages
Oxford University Press (OUP) , 2011. Vol. 64, no 3, 371-399 p.
National Category
URN: urn:nbn:se:liu:diva-70337DOI: 10.1093/qjmam/hbr010ISI: 000293915000007OAI: diva2:438338
Funding Agencies|Swedish Research Council (VR)||G. S. Magnusons Foundation of the Royal Swedish Academy of Sciences||Linkoping University||Available from: 2011-09-02 Created: 2011-09-02 Last updated: 2011-09-02

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kozlov, Vladimir
By organisation
Applied MathematicsThe Institute of Technology
In the same journal
Quarterly Journal of Mechanics and Applied Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 37 hits
ReferencesLink to record
Permanent link

Direct link