In this thesis the connections between the boundary conditions and the vari- ance of the solution to a stochastic partial differential equation (PDE) are investigated. In particular a hyperbolical system of PDE’s with stochastic initial and boundary data are considered. The problem is shown to be well- posed on a class of boundary conditions through the energy method. Stability is shown by using summation-by-part operators coupled with simultaneous- approximation-terms. By using the energy estimates, the relative variance of the solutions for different boundary conditions are analyzed. It is concluded that some types of boundary conditions yields a lower variance than others. This is verified by numerical computations.